Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.532
Filter
1.
Geriatr Nurs ; 59: 516-525, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39146642

ABSTRACT

With the trend towards ageing population globally, the salutogenic model can be integrated in interventions for pre-ageing and older adults to better support healthy ageing. However, there is limited research examining the salutogenic model's pathway amongst pre-ageing and older adults. Hence, this study aims to investigate pathways of the salutogenic model amongst pre-ageing and older adults with chronic diseases. Two hundred and eight pre-ageing and older adults were recruited from 11 Senior Activity Centres in Singapore. Data was collected using a self-reported questionnaire and analysed using path analyses. The indirect pathway from Subjective Cognitive Complaints to self-care abilities via sense of coherence and health practices were significant. Participants with higher sense of coherence may have increased capacities to execute more complex forms of self-care. Future interventions integrating the salutogenic model could enhance pre-ageing and older adults' self-care abilities to cope with chronic diseases and contribute to healthy ageing.

2.
Bioorg Chem ; 151: 107712, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39146761

ABSTRACT

Ketolides (3-keto) such as TE-802 and acylides (3-O-acyl) like TEA0929 are ineffective against constitutively resistant pathogens harboring erythromycin ribosomal methylation (erm) genes. Following our previous work on alkylides (3-O-alkyl), we explored the structure-activity relationships of hybrids combining (R/S) 3-descladinosyl erythromycin with 6/7-quinolone motifs, featuring extended ether-linked spacers, with a focus on their efficacy against pathogens bearing constitutive erm gene resistance. Optimized compounds 17a and 31f not only reinstated efficacy against inducibly resistant pathogens but also demonstrated significantly augmented activities against constitutively resistant strains of Streptococcus pneumoniae and Streptococcus pyogenes, which are typically refractory to existing C-3 modified macrolides. Notably, hybrid 31f (coded ZN-51) represented a pioneering class of agents distinguished by its dual modes of action, with ribosomes as the primary target and topoisomerases as the secondary target. As a novel chemotype of macrolide-quinolone hybrids, alkylide 31f is a valuable addition to our armamentarium against macrolide-resistant bacteria.

3.
J Pain Res ; 17: 2605-2628, 2024.
Article in English | MEDLINE | ID: mdl-39139997

ABSTRACT

Purpose: Chemotherapy-induced peripheral neuropathy (CIPN) still lacks efficient therapeutic drugs. This study aimed to systematically evaluate the effects of Huangqi Guizhi Wuwu Decoction (HGWD) alone or combined with positive drugs on CIPN prevention and treatment. Methods: The PubMed, Embase, Web of Science, Cochrane, China National Knowledge Infrastructure (CNKI), Wan Fang Data, China Science and Technology Journal (VIP) and Chinese Biomedical (CBM) databases were searched for randomized controlled trials (RCTs) of HGWD for CIPN prevention and treatment. The search time ranged from database establishment to October 17, 2023. The Cochrane risk-of-bias assessment tool was used for quality assessment, Review Manager 5.3 and STATA 12.0 were used for meta-analysis, and GRADEprofiler was used for evidence level assessment. Results: A total of 32 RCTs involving 1987 patients were included. The meta-analysis results revealed the following: 1. In terms of the total CIPN incidence, that in the HGWD group was lower than that in the blank control group. The incidence in both the HGWD and HGWD+positive drug groups was lower than that in the monotherapy-positive drug group. 2. In terms of the incidence of severe CIPN, that in the HGWD group was lower than that in the blank control and positive drug groups. There was no statistically significant difference between the HGWD+positive drug and positive drug groups. Sensitivity analysis revealed that the results of severe incidence in the HGWD group was lower than that in the positive drug group were unstable 3. HGWD did not increase the number of chemotherapy-related adverse events. Conclusion: HGWD can safely and effectively prevent CIPN, reduce symptoms, improve quality of life and reduce the impact of chemotherapy drugs on sensory nerve conduction. However, more high-quality RCTs are needed to compare the efficacy of HGWD with that of positive control drugs in preventing severe CIPN.

4.
Bioorg Chem ; 151: 107691, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39116524

ABSTRACT

Ten new B-ring aromatized 6/6/6-tricyclic dearomatized benzocogeijerene-based meroterpenoids with unusual methyl 1,2-shift or demethylation (2-9b), and two new geranylquinol derivatives (1 and 10), together with two known compounds (11 and 12), were isolated from the roots of Arnebia euchroma. Their structures were elucidated by extensive spectroscopic methods, X-ray diffraction crystallography, and ECD calculations. The plausible biosynthetic pathways including the unusual methyl 1,2-shfit and demethylation for B-ring aromatized 6/6/6-tricyclic meroterpenoids were discussed. Compounds 1, 2, 5, 6, 11, and 12 showed significant cardioprotective activities comparable to diltiazem against isoprenaline (ISO)-induced H9C2 cell damage in vitro. Compound 11 probably exerted heart-protective effect on ISO-induced H9C2 cells by modulating the PI3K-AKT-mTOR pathway, reducing excessive autophagy, and decreasing myocardial apoptosis.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124929, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39116592

ABSTRACT

The competition among drugs for binding to plasma proteins is regarded as a pharmacokinetic drug interaction. Competition between antitumor agents and other drugs for plasma protein binding can alter the free concentration of the drug, potentially impacting its efficacy and increasing the risk of toxic side effects. Through a range of spectroscopic techniques, this study examined the interaction between limonin and human serum albumin (HSA) in the context of berberine (Ber) and curcumin (Cur) under physiological conditions to clarify the binding mechanisms of binary and ternary systems at the molecular level. As demonstrated by fluorescence quenching experiments, Static quenching was identified as the mechanism of interaction between HSA and limonin. The results of site competition experiments indicated that the binding site between limonin and HSA was site I, a result further supported by molecular docking simulations. Through the use of thermodynamic data calculations, it was determined that limonin forms a stable complex with HSA by establishing hydrogen bonds and van der Waals forces. Circular dichroism (CD) spectroscopy, three-dimensional (3D) fluorescence spectroscopy, and synchronous fluorescence spectroscopy (SFS) employed to validate the notion that limonin perturbed the microenvironment of amino acids and induced conformational changes in HSA. What's more, the presence of Ber or Cur was found to have further modified the alterations observed in the interaction between the original HSA-limonin binary system. In vitro cellular experiments showed that interaction with HSA reduced the antitumor activity of limonin. In contrast, adding Ber or Cur increased the inhibition rate of tumor cells. The coexistence of both Ber and Cur significantly diminished limonin's binding affinity to HSA. The current investigation enhances comprehension regarding the binding characteristics and interaction mechanisms involving limonin, Ber, Cur, and HSA. It explores the potential of HSA as a versatile drug carrier and furnishes theoretical underpinnings for co-administrative strategies.

6.
J Neurochem ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092633

ABSTRACT

Orexin is exclusively produced in neurons localized within the lateral hypothalamic area (LHA) and perifornical area (PFA). Orexin has been identified as a key promotor of arousal. The selective loss of orexinergic neurons results in narcolepsy. It is known that the intrinsic electrophysiological properties are critical for neurons to perform their functions in corresponding brain regions. In addition to hypothalamic orexin, other brain nuclei are involved in the regulation of sleep and wakefulness. Quite a lot of studies focus on elucidating orexin-induced regulation of sleep-wake states and modulation of neuronal electrophysiological properties in several brain regions. Here, we summarize that the orexinergic neurons exhibit spontaneous firing activity which is associated with the states of sleep-wake cycle. Orexin mainly exerts postsynaptic excitatory effects on multiple brain nuclei associated with the process of sleep and wakefulness. This review may provide a background to guide future research about the cellular mechanisms of orexin-induced maintaining of arousal.

7.
J Med Chem ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137258

ABSTRACT

Cisplatin is a widely used drug for the clinical treatment of tumors. However, nephrotoxicity limits its widespread use. A series of compounds including eight analogs (G3-G10) and 40 simplifiers (G11-G50) were synthesized based on the total synthesis of Psiguamer A and B, which were novel meroterpenoids with unusual skeletons from the leaves of Psidium guajava. Among these compounds, (d)-G8 showed the strongest protective effect on cisplatin-induced acute kidney injury (AKI) in vitro and vivo, and slightly enhanced the antitumor efficacy of cisplatin. A mechanistic study showed that (d)-G8 promoted the efflux of cisplatin via upregulating the copper transporting efflux proteins ATP7A and ATP7B. It enhanced autophagy through the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. (d)-G8 showed no acute toxicity or apparent pathological damage in the healthy mice at a single dose of 1 g/kg. This study provides a promising lead against cisplatin-induced AKI.

8.
Microbiol Spectr ; : e0100424, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101825

ABSTRACT

Growing evidence have indicated the crucial role of intratumor microbiome in a variety of solid tumor. However, the intratumoral microbiome in gynecological malignancies is largely unknown. In the present study, a total of 90 Han patients, including 30 patients with cancer in cervix, ovary, and endometrium each were enrolled, the composition of intratumoral microbiome was assessed by 16S rDNA amplicon high throughput sequencing. We found that the diversity and metabolic potential of intratumoral microbiome in all three cancer types were very similar. Furthermore, all three cancer types shared a few taxa that collectively take up high relative abundance and positive rate, including Pseudomonas sp., Comamonadaceae gen. sp., Bradyrhizobium sp., Saccharomonospora sp., Cutibacterium acnes, Rubrobacter sp., Dialister micraerophilus, and Escherichia coli. Additionally, Haemophilus parainfluenzae and Paracoccus sp. in cervical cancer, Pelomonas sp. in ovarian cancer, and Enterococcus faecalis in endometrial cancer were identified by LDA to be a representative bacterial strain. In addition, in cervical cancer patients, alpha-fetoprotein (AFP) (correlation coefficient = -0.3714) was negatively correlated (r = 0.4, 95% CI: 0.03 to 0.7) with Rubrobacter sp. and CA199 (correlation coefficient = 0.3955) was positively associated (r = 0.4, 95% CI: 0.03 to 0.7) with Saccharomonospora sp.. In ovarian cancer patients, CA125 (correlation coefficient = -0.4451) was negatively correlated (r = -0.4, 95% CI: -0.7 to -0.09) with Porphyromonas sp.. In endometrial cancer patients, CEA (correlation coefficient = -0.3868) was negatively correlated (r = -0.4, 95% CI: -0.7 to -0.02) with Cutibacterium acnes. This study promoted our understanding of the intratumoral microbiome in gynecological malignancies.IMPORTANCEIn this study, we found the compositional spectrum of tumor microbes among gynecological malignancies were largely similar by sharing a few taxa and differentiated by substantial species owned uniquely. Certain species, mostly unreported, were identified to be associated with clinical characteristics. This study prompted our understanding of gynecological malignancies and offered evidence for tumor microbes affecting tumor biology among cancers in the female reproductive system.

9.
J Mol Model ; 30(9): 303, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115702

ABSTRACT

CONTEXT: The DNAN/DNB eutectic is a high-energy explosive eutectic with superior safety and thermal stability compared to traditional melt-cast explosives. However, the addition of polymer binders can effectively enhance its mechanical properties, allowing for continued production demands without the need for changes to existing factory equipment. In this paper, a model of the DNAN/DNB eutectic explosive was established, and five different types of polymers-cis-1,4-polybutadiene (BR), ethylene-vinyl acetate copolymer (EVA), polyethylene glycol (PEG), fluorinated polymer (F2603), and polyvinylidene fluoride (PVDF)-were added to the (1 0 - 1), (1 0 1), and (0 1 1) cleavage planes, respectively, to form polymer-bonded explosives (PBXs). The stability, trigger bond length, mechanical properties, and detonation performance of the various polymer-bound PBXs were predicted retrogressively. Among the five PBX models, the DNAN/DNB/PEG model exhibited the highest binding energy and the shortest trigger bond length, indicating a significant improvement in stability, compatibility, and sensitivity compared to the original eutectic. Additionally, although the detonation performance of DNAN/DNB decreased after the addition of binders, the final results were still satisfactory. Overall, the DNAN/DNB/PEG model demonstrated excellent comprehensive performance, proving that among the many polymer binders, PEG is the optimal choice for DNAN/DNB. METHODS: Within the Materials Studio software, molecular dynamics (MD) simulations were employed to predict the properties of the DNAN/DNB eutectic PBX. The MD simulation timestep was set to 1 fs, with a cumulative simulation duration of 2 ns. A 2 ns MD simulation was conducted using the isothermal-isobaric ensemble (NPT). The COMPASS force field was applied, and the temperature was fixed at 295 K.

10.
Crit Care ; 28(1): 263, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103945

ABSTRACT

BACKGROUND: Automated analysis of lung computed tomography (CT) scans may help characterize subphenotypes of acute respiratory illness. We integrated lung CT features measured via deep learning with clinical and laboratory data in spontaneously breathing subjects to enhance the identification of COVID-19 subphenotypes. METHODS: This is a multicenter observational cohort study in spontaneously breathing patients with COVID-19 respiratory failure exposed to early lung CT within 7 days of admission. We explored lung CT images using deep learning approaches to quantitative and qualitative analyses; latent class analysis (LCA) by using clinical, laboratory and lung CT variables; regional differences between subphenotypes following 3D spatial trajectories. RESULTS: Complete datasets were available in 559 patients. LCA identified two subphenotypes (subphenotype 1 and 2). As compared with subphenotype 2 (n = 403), subphenotype 1 patients (n = 156) were older, had higher inflammatory biomarkers, and were more hypoxemic. Lungs in subphenotype 1 had a higher density gravitational gradient with a greater proportion of consolidated lungs as compared with subphenotype 2. In contrast, subphenotype 2 had a higher density submantellar-hilar gradient with a greater proportion of ground glass opacities as compared with subphenotype 1. Subphenotype 1 showed higher prevalence of comorbidities associated with endothelial dysfunction and higher 90-day mortality than subphenotype 2, even after adjustment for clinically meaningful variables. CONCLUSIONS: Integrating lung-CT data in a LCA allowed us to identify two subphenotypes of COVID-19, with different clinical trajectories. These exploratory findings suggest a role of automated imaging characterization guided by machine learning in subphenotyping patients with respiratory failure. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04395482. Registration date: 19/05/2020.


Subject(s)
COVID-19 , Lung , Phenotype , Respiratory Insufficiency , Tomography, X-Ray Computed , Humans , COVID-19/diagnostic imaging , COVID-19/physiopathology , Tomography, X-Ray Computed/methods , Female , Male , Middle Aged , Lung/diagnostic imaging , Lung/physiopathology , Aged , Respiratory Insufficiency/diagnostic imaging , Respiratory Insufficiency/etiology , Respiratory Insufficiency/physiopathology , Cohort Studies , Adult
11.
BMC Geriatr ; 24(1): 660, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112944

ABSTRACT

BACKGROUND: Due to the high prevalence of multimorbidity and realistic health service demands for fall prevention, there is growing interest in the association between multimorbidity and falls. Our study aimed to identify multimorbidity patterns among Chinese older adults and explore the association between multimorbidity patterns and falls. METHODS: Data from 4,579 Chinese community-dwelling older adults was included in this analysis. Information regarding falls and 10 chronic conditions was collected. An exploratory factor analysis was performed to determine multimorbidity patterns. Regression models were fitted to explore the associations of individual chronic disease or multimorbidity patterns with falls. RESULTS: Among 4,579 participants, 368 (8.0%) were defined as fallers, including 92 (2.0%) frequent fallers, and multimorbidity affected 2,503 (54.7%) participants. Older adults with multimorbidity were more likely to be fallers [odds ratio (OR) = 1.3, P = 0.02] and frequent fallers (OR = 1.7, P = 0.04). Three multimorbidity patterns were identified (i.e., cardiovascular-metabolic diseases, psycho-cognitive diseases and organic diseases), and the associations between psycho-cognitive diseases/organic diseases and prevalent falls or frequent falls were found to be significant. CONCLUSIONS: The psycho-cognitive disease pattern and organic disease pattern are significantly associated with falls. Therefore, more attention should be paid to patients with psycho-cognitive diseases and timely, targeted diagnostic and treatment services should be provided in fall prevention.


Subject(s)
Accidental Falls , Independent Living , Multimorbidity , Humans , Accidental Falls/prevention & control , Male , Aged , Female , Multimorbidity/trends , China/epidemiology , Aged, 80 and over , Independent Living/trends , Risk Factors , Cross-Sectional Studies , Chronic Disease/epidemiology
12.
BMC Med Genomics ; 17(1): 216, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160503

ABSTRACT

BACKGROUND: There is growing evidence for a relationship between gut microbiota and hepatic encephalopathy (HE). However, the causal nature of the relationship between gut microbiota and HE has not been thoroughly investigated. METHOD: This study utilized the large-scale genome-wide association studies (GWAS) summary statistics to evaluate the causal association between gut microbiota and HE risk. Specifically, two-sample Mendelian randomization (MR) approach was used to identify the causal microbial taxa for HE. The inverse variance weighted (IVW) method was used as the primary MR analysis. Sensitive analyses were performed to validate the robustness of the results. RESULTS: The IVW method revealed that the genus Bifidobacterium (OR = 0.363, 95% CI: 0.139-0.943, P = 0.037), the family Bifidobacteriaceae (OR = 0.359, 95% CI: 0.133-0.950, P = 0.039), and the order Bifidobacteriales (OR = 0.359, 95% CI: 0.133-0.950, P = 0.039) were negatively associated with HE. However, no causal relationship was observed among them after the Bonferroni correction test. Neither heterogeneity nor horizontal pleiotropy was found in the sensitivity analysis. CONCLUSION: Our MR study demonstrated a potential causal association between Bifidobacterium, Bifidobacteriaceae, and Bifidobacteriales and HE. This finding may provide new therapeutic targets for patients at risk of HE in the future.


Subject(s)
Gastrointestinal Microbiome , Genome-Wide Association Study , Hepatic Encephalopathy , Mendelian Randomization Analysis , Humans , Hepatic Encephalopathy/genetics , Hepatic Encephalopathy/microbiology , Bifidobacterium/genetics
13.
Biomacromolecules ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39163639

ABSTRACT

Chemical reaction systems that can occur via multiple pathways in a controllable fashion are highly attractive for advanced materials applications and biological research. In this report, we introduce a bioorthogonal reaction manifold based on a chalcone pyrene (CPyr) moiety that can undergo either red-shifted photoreversible [2 + 2] cycloaddition or thiol-Michael addition click reaction. By coupling the CPyr to a water-soluble poly(ethylene glycol) end group, we demonstrate the efficient polymer dimerization and cleavage by blue light (λ = 450 nm) and UV light (λ = 340 nm), respectively. In the absence of light, CPyr rapidly reacts with thiols in aqueous environments, enabling fast and efficient polymer end-group functionalization. The chemical reaction manifold was further employed in polymer cross-linking for the preparation of hydrogels whose stiffness and morphology can be modulated by different photonic fields or the addition of a thiol cross-linker. The photoreversible cycloaddition and thiol-Michael addition click reaction can be used in conjunction for spatial and temporal conjugation of a streptavidin protein. Both cross-linking conditions are nontoxic to various cell lines, highlighting their potential in biomaterials applications.

14.
Mol Neurobiol ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164481

ABSTRACT

Contactin-associated protein1 (Caspr1) plays an important role in the formation and stability of myelinated axons. In Caspr1 mutant mice, autophagy-related structures accumulate in neurons, causing axonal degeneration; however, the mechanism by which Caspr1 regulates autophagy remains unknown. To illustrate the mechanism of Caspr1 in autophagy process, we demonstrated that Caspr1 knockout in primary neurons from mice along with human cell lines, HEK-293 and HeLa, induced autophagy by downregulating the PI3K/AKT/mTOR signaling pathway to promote the conversion of microtubule-associated protein light chain 3 I (LC3-I) to LC3-II. In contrast, Caspr1 overexpression in cells contributed to the upregulation of this signaling pathway. We also demonstrated that Caspr1 knockout led to increased LC3-I protein expression in mice. In addition, Caspr1 could inhibit the expression of autophagy-related 4B cysteine peptidase (ATG4B) protein by directly binding to ATG4B in overexpressed Caspr1 cells. Intriguingly, we found an accumulation of ATG4B in the Golgi apparatuses of cells overexpressing Caspr1; therefore, we speculate that Caspr1 may restrict ATG4 secretion from the Golgi apparatus to the cytoplasm. Collectively, our results indicate that Caspr1 may regulate autophagy by modulating the PI3K/AKT/mTOR signaling pathway and the levels of ATG4 protein, both in vitro and in vivo. Thus, Caspr1 can be a potential therapeutic target in axonal damage and demyelinating diseases.

15.
Acad Radiol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39097508

ABSTRACT

RATIONALE AND OBJECTIVES: To investigate the predictive value of coronary CT angiography (CCTA)-based radiomics for vessel-specific ischemia by stress dynamic CT myocardial perfusion imaging (MPI). MATERIALS AND METHODS: Patients with typical angina/atypical angina/non-angina chest pain who underwent both stress dynamic CT MPI and CCTA scans were retrospectively enrolled. The following models were constructed for ischemic prediction using logistic regression and CCTA-derived quantitative and radiomic features: plaque quantitative model, lumen quantitative model, CT-fractional flow reserve (CT-FFR) model, integrative quantitative model, plaque radiomic model, peri-coronary adipose tissue (pCAT) radiomic model, integrative radiomic model, and quantitative and radiomic fusion model. A relative myocardial blood flow ≤ 0.75 on stress dynamic CT MPI was considered ischemic. The models' performances were quantified by the area under the receiver-operating characteristic curve (AUC). RESULTS: 386 coronary vessels (stenosis grade: 25%∼75%; training set: 200 [ischemia/non-ischemia=96/104]; test set:186 [ischemia/non-ischemia=79/107]) from 326 patients were included. The plaque radiomic model (training/test set: AUC=0.81/0.80) outperformed (p < .05) both the plaque quantitative (training/test set: AUC=0.71/0.68) model and the lumen quantitative (training/test set: AUC=0.69/0.65) model in identifying ischemia. The integrative radiomic model (training/test set: AUC=0.83/0.82) outperformed (p < .05) the CT-FFR model (training/test set: AUC=0.74/0.73) for ischemic prediction. The quantitative and radiomic fusion model (training/test set: AUC=0.86/0.84) outperformed (p < .05) the integrative quantitative model (training/test set: AUC=0.79/0.77) for ischemic detection. CONCLUSION: The plaque and pCAT radiomic features were superior to the plaque and pCAT quantitative features in predicting ischemia and the addition of the radiomic features to the quantitative features for ischemic identification yielded incremental discriminatory value.

16.
Nutr Cancer ; : 1-8, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160664

ABSTRACT

OBJECTIVE: To investigate the association between sarcopenia, short-term efficacy, and long-term survival in patients with extensive small-cell lung cancer (SCLC) treated with standard first-line immunochemotherapy. METHODS: A total of 63 patients initially diagnosed with extensive-stage small cell lung cancer were enrolled in the prospective study from December 1, 2020 to December 31, 2022. The clinical characteristics, body composition, blood test results, and image data were obtained before treatment. Patients were divided into sarcopenia and non-sarcopenia groups according to the diagnostic criteria of the Asian Sarcopenia Working Group 2019. The primary outcome was overall survival (OS) and comprehensive survival analyses were performed. Secondary outcomes included short-term efficacy and adverse events associated with first-line immunochemotherapy. RESULTS: The median age of the 63 patients enrolled in our study was 63.0 years (40-80 years). The incidence of sarcopenia was 19.0% (12/63) in patients with extensive SCLC. Compared with non-sarcopenia patients, extensive-stage SCLC patients with sarcopenia were significantly older (69.0 vs. 62.0, P = 0.017), and had lower body mass index (BMI) (20.29 vs. 24.27, P < 0.001), hand grip strength (HGS) (20.42 vs. 30.75, P < 0.001), and albumin (35.9 vs. 41.40, P < 0.001). The objective response rate after two cycles of standard first-line immunochemotherapy in the sarcopenia group was lower than in the non-sarcopenia group (30.0 vs. 78.9%, P = 0.012). There was no significant difference in chemotherapy-related hematological toxicity between the two groups. During a median follow-up of 15 months (3-33 months), patients with extensive SCLC had a median OS of 24 months, with 1-year survival of 75% and 2-year survival of 52%, respectively. Compared to non-sarcopenia patients, the median OS in the sarcopenia group was significantly shorter (9 vs. 24 months, P = 0.0014). Multivariate Cox analysis showed that sarcopenia was an independent risk factor for OS in patients with extensive SCLC (HR = 4.993, 95%CI = 1.106-22.538, P = 0.037). CONCLUSIONS: Patients with Extensive SCLC and sarcopenia had worse clinical outcomes and shorter OS. Sarcopenia is a prognostic factor affecting first-line treatment efficacy and long-term survival of patients with SCLC in the era of immunotherapy.

17.
Alzheimers Dement ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129310

ABSTRACT

INTRODUCTION: The apolipoprotein E (APOE) ε4 allele exerts a significant influence on peripheral inflammation and neuroinflammation, yet the underlying mechanisms remain elusive. METHODS: The present study enrolled 54 patients diagnosed with late-onset Alzheimer's disease (AD; including 28 APOE ε4 carriers and 26 non-carriers). Plasma inflammatory cytokine concentration was assessed, alongside bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) analysis of peripheral blood mononuclear cells (PBMCs). RESULTS: Plasma tumor necrosis factor α, interferon γ, and interleukin (IL)-33 levels increased in the APOE ε4 carriers but IL-7 expression notably decreased. A negative correlation was observed between plasma IL-7 level and the hippocampal atrophy degree. Additionally, the expression of IL-7R and CD28 also decreased in PBMCs of APOE ε4 carriers. ScRNA-seq data results indicated that the changes were mainly related to the CD4+ Tem (effector memory) and CD8+ Tem T cells. DISCUSSION: These findings shed light on the role of the downregulated IL-7/IL-7R pathway associated with the APOE ε4 allele in modulating neuroinflammation and hippocampal atrophy. HIGHLIGHTS: The apolipoprotein E (APOE) ε4 allele decreases plasma interleukin (IL)-7 and aggravates hippocampal atrophy in Alzheimer's disease. Plasma IL-7 level is negatively associated with the degree of hippocampal atrophy. The expression of IL-7R signaling decreased in peripheral blood mononuclear cells of APOE ε4 carriers Dysregulation of the IL-7/IL-7R signal pathways enriches T cells.

19.
Org Lett ; 26(32): 6809-6813, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39102516

ABSTRACT

Represented herein is the first 1,3-difunctionalization of alkenes via photocatalysis. A single cobaloxime is used to carry out two catalytic cycles in which cobaloxime is used not only as a photocatalyst to initiate the reaction but also as a metal catalyst for the ß-H elimination process. Electron-deficient alkenes, electron-rich alkenes, and unactivated alkenes could be directly converted to 1,3-bisphosphorylated products, even unsymmetric 1,3-bisphosphorylated products, with only H2 as a byproduct under extremely mild reaction conditions.

20.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3540-3547, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041125

ABSTRACT

The chemical constituents from the stems and leaves of Artocarpus tonkinensis in Artocarpus of Moraceae were systematically studied by means of silica gel, octadecylsilyl(ODS), and Sephadex LH-20 gel column chromatographies, as well as preparative high-performance liquid chromatography(Pre-HPLC) and a variety of chromatographic separation techniques. The spectral data and physicochemical properties of the compounds were obtained from separation and compared with those of the compounds reported in the literature. As a result, 11 compounds isolated from the 90% ethanol extract of the stems and leaves of A. tonkinensis were identified as artocatonkine(1), 5,6,7,4'-tetramethoxyflavone(2), apigenin-4'-O-ß-D-glucoside(3), rayalinol(4), psorachalcone A(5), 4-ketopinoresinol(6), ficusesquilignan B(7), pinnatifidanin AI(8), pinnatifidanin A(9), O-methylmellein(10), and trans-4-hydroxymellein(11). Among these compounds, compound 1 was a new prenylated flavone, and compounds 2-11 were isolated from the plants belonging to the genus Artocarpus for the first time. Furthermore, all compounds 1-11 were evaluated for their anti-rheumatoid arthritis activities, and the MTS method was used to measure their inhibitory effects on the proliferation of synovioblasts in vitro. The results of activity evaluation showed that flavonoid compounds 1-3, 5, and lignan compounds 8 and 9 displayed significant anti-rheumatoid arthritis activities, showing the IC_(50) values in inhibiting the proliferation of synovioblasts MH7A from(6.38±0.06) µmol·L~(-1) to(168.58±0.28)µmol·L~(-1).


Subject(s)
Artocarpus , Cell Proliferation , Plant Leaves , Plant Stems , Artocarpus/chemistry , Plant Leaves/chemistry , Plant Stems/chemistry , Cell Proliferation/drug effects , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Cell Line , Molecular Structure , Chromatography, High Pressure Liquid
SELECTION OF CITATIONS
SEARCH DETAIL