Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.257
Filter
1.
J Org Chem ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39250642

ABSTRACT

An enantioselective Mannich reaction with cyclic N-sulfonyl ketimines as the nucleophiles was developed. In the presence of 5 mol % chiral thiourea catalyst C11, the asymmetric Mannich reaction between cyclic N-sulfonyl ketimines and isatin-derived ketimines was achieved in high yields and good-to-excellent enantioselectivities (84-99% yields with 75-99.8% ee). This methodology provided an effective route to construct chiral 3-amino-2-oxindoles containing a cyclic N-sulfonyl ketimine scaffold. The initial biological evaluation of the products in cell-based assays demonstrated that some compounds have excellent antiproliferative activity against human osteosarcoma cells.

2.
Nanoscale ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39257237

ABSTRACT

Lithium (Li) metal anodes are considered one of the most promising anodes for high-performance batteries with ultra-high specific energy density. However, uncontrolled dendrite growth and the unsuitability of common systems for high voltage hinder the development of Li metal batteries with long cycle life. Herein, we report a rationally designed artificial solid electrolyte interphase (SEI) for Li metal anodes, incorporating LiNO3 and lithium difluoro(oxalato)borate (LiDFOB) as additives within a porous poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer skeleton (referred to as PNF). LiNO3 and LiDFOB can release and synergistically react at the electrode surface, leading to the in situ generation of a homogeneously distributed inorganic/organic SEI during the electrochemical process. This SEI improves homogeneity, ionic conductivity and mechanical stability, contributing to the suppression of electrolyte side reactions and Li dendrite growth. Moreover, a uniform CEI with high Li+ conductivity can be constructed on the NCM811 particles, further enhancing the structural integrity of the NCM811 cathode. As a result, the artificial SEI layer on Li metal anodes enables stable cycling of Li-Cu half cells in an ester-based electrolyte and Li-LiNi0.8Mn0.1Co0.1O2 full cell even at a high voltage of 4.5 V. This work provides new insights into designing homogeneous SEIs for Li metal batteries.

3.
JBI Evid Implement ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39119876

ABSTRACT

INTRODUCTION: The nursing management of intracranial hypertension in adult patients with severe brain injury is crucial for maintaining the stability of intracranial pressure, which ultimately improves patient outcomes. OBJECTIVES: This project aimed to implement evidence-based practices for the nursing management of intracranial hypertension in adult patients with severe brain injury. METHODS: This evidence implementation project was conducted in a neurosurgery intensive care unit in a large tertiary hospital in Guangzhou, China. The project was guided by the JBI Evidence Implementation Framework, which is an audit and feedback model with seven stages. The Ottawa Model of Research Use was used to identify barriers and facilitators to best practices and to develop improvement strategies. RESULTS: Thirty-three nurses and 50 patients with severe brain injury participated in the baseline and follow-up audits. After project implementation, follow-up audits revealed significantly improved compliance with best practices compared with baseline. Nurses' awareness of best practices increased (41% to 96%); nursing assessment, monitoring, and interventions related to intracranial hypertension rose significantly (from 82%, 75%, and 59% to 98%, 84%, and 87%, respectively); and patients' optic nerve sheath diameter was notably lower (6.002±0.677 mm to 5.698±0.730 mm). CONCLUSIONS: The systematic integration of consistent training and education, together with the refinement of care processes and the creation of relevant tools, led to a significant improvement in awareness and adherence to best practices. Further testing of this program in more hospitals is needed. SPANISH ABSTRACT: http://links.lww.com/IJEBH/A243.

4.
Am J Chin Med ; : 1-19, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39169449

ABSTRACT

Recent research has indicated that formononetin demonstrates a potent anti-inflammatory effect in various diseases. However, its impact on sterile inflammation kidney injury, specifically acute kidney injury (AKI), remains unclear. In this study, we utilized an ischemia/reperfusion-induced AKI (IRI-AKI) mouse model and bone marrow-derived macrophages (BMDMs) to investigate the effects of formononetin on sterile inflammation of AKI and to explore the underlying mechanism. The administration of formononetin significantly preserved kidney function from injury, as evidenced by lower serum creatinine and blood urea nitrogen levels compared to IRI-AKI mice without treatment. This was further confirmed by less pathological changes in renal tubules and low expression of tubular injury markers such as KIM-1 and NGAL in the formononetin-treated IRI-AKI group. Furthermore, formononetin effectively suppressed the expression of pro-inflammatory cytokines (MCP-1, TNF-[Formula: see text], and IL-1[Formula: see text]) and macrophage infiltration into the kidneys of AKI mice. In vitro studies showed that formononetin led to less macrophage polarization towards a pro-inflammatory phenotype in BMDMs stimulated by LPS and IFN-[Formula: see text]. The mechanism involved the KLF6 and p-STAT3 pathway, as overexpression of KLF6 restored pro-inflammatory cytokine levels and pro-inflammatory polarization. Our findings demonstrate that formononetin can significantly improve renal function and reduce inflammation in IRI-AKI, which may be attributed to the inhibition of KLF6/STAT3-mediated macrophage pro-inflammatory polarization. This discovery presents a new promising therapeutic option for the treatment of IRI-AKI.

5.
World J Gastrointest Oncol ; 16(8): 3539-3558, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39171161

ABSTRACT

BACKGROUND: Herba Patriniae and Coix seed (HC) constitute a widely utilized drug combination in the clinical management of colorectal cancer (CRC) that is known for its diuretic, anti-inflammatory, and swelling-reducing properties. Although its efficacy has been demonstrated in a clinical setting, the active compounds and their mechanisms of action in CRC treatment remain to be fully elucidated. AIM: To identify the active, CRC-targeting components of HC and to elucidate the mechanisms of action involved. METHODS: Active HC components were identified and screened using databases. Targets for each component were predicted. CRC-related targets were obtained from human gene databases. Interaction targets between HC and CRC were identified. A "drug-ingredient-target" network was created to identify the core components and targets involved. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to elucidate the key pathways involved. Molecular docking between core targets and key components was executed. In vitro experiments validated core monomers. RESULTS: Nineteen active components of HC were identified, with acacetin as the primary active compound. The predictive analysis identified 454 targets of the active compounds in HC. Intersection mapping with 2685 CRC-related targets yielded 171 intervention targets, including 30 core targets. GO and KEGG analyses indicated that HC may influence the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Molecular docking showed that acacetin exhibited an optimal interaction with AKT1, identifying PI3K, AKT, and P53 as key genes likely targeted by HC during CRC treatment. Acacetin inhibited HT-29 cell proliferation and migration, as well as promoted apoptosis, in vitro. Western blotting analysis revealed increased p53 and cleaved caspase-3 expression and decreased levels of p-PI3K, p-Akt, and survivin, which likely contributed to CRC apoptosis. CONCLUSION: Acacetin, the principal active compound in the HC pair, inhibited the proliferation and migration of HT-29 cells and promoted apoptosis through the PI3K/Akt/p53 signaling pathway.

6.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167469, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153664

ABSTRACT

Premature ovarian insufficiency (POI) critically affects female reproductive health, with obesity being a significant and recognized risk factor. Interleukin-27 (IL-27), known for its role in immune modulation and inflammation, has garnered attention in metabolic syndrome research. Nonetheless, the role of these immunometabolic factors on the initiation of POI remains to be unraveled. Our investigation delves into the influence of impaired IL-27 signaling on POI induction, particularly under the challenge of a high-fat diet (HFD). We analyzed patients' serum profiles and established a correlation of increased serum triglycerides with decreased IL-27 levels in POI cases. Experiments on C57BL/6 mice lacking the IL-27 receptor alpha (Il27ra-/-) revealed that when subjected to HFD, these mice developed hallmark POI symptoms. This includes escalated lipid deposition in both liver and ovarian tissues, increased ovarian macrophages cellular aging, and diminished follicle count, all pointing to compromised ovarian function. These findings unveil a novel pathway wherein impaired IL-27 signaling potentiates the onset of POI in the presence of HFD. Understanding the intricate interplay between IL-27, metabolic alterations, and immune dysregulation sheds light on potential therapeutic avenues for managing POI, offering hope for improved reproductive health outcomes.

7.
Environ Monit Assess ; 196(9): 798, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115708

ABSTRACT

Watershed ecosystems play a pivotal role in maintaining the global carbon cycle and reducing global warming by serving as vital carbon reservoirs for sustainable ecosystem management. In this study, we based on the "quantity-mechanism-scenario" frameworks, integrate the MCE-CA-Markov and InVEST models to evaluate the spatiotemporal variations of carbon stocks in mid- to high-latitude alpine watersheds in China under historical and future climate scenarios. Additionally, the study employs the Geographic Detector model to explore the driving mechanisms influencing the carbon storage capacity of watershed ecosystems. The results showed that the carbon stock of the watershed increased by about 15.9 Tg from 1980 to 2020. Fractional Vegetation Cover (FVC), Digital Elevation Model (DEM), and Mean Annual Temperature (MAT) had the strongest explanatory power for carbon stocks. Under different climate scenarios, it was found that the SSP2-4.5 scenario had a significant rise in carbon stock from 2020 to 2050, roughly 24.1 Tg. This increase was primarily observed in the southeastern region of the watersheds, with forest and grassland effectively protected. Conversely, according to the SSP5-8.5 scenario, the carbon stock would decrease by about 50.53 Tg with the expansion of cultivated and construction land in the watershed's southwest part. Therefore, given the vulnerability of mid- to high-latitude mountain watersheds, global warming trends continue to pose a greater threat to carbon sequestration in watersheds. Our findings carry important implications for tackling potential ecological threats in mid- to high-latitude watersheds in the Northern Hemisphere and assisting policymakers in creating carbon sequestration plans, as well as for reducing climate change.


Subject(s)
Carbon , Climate Change , Ecosystem , Environmental Monitoring , China , Carbon/analysis , Carbon Sequestration , Carbon Cycle , Conservation of Natural Resources , Models, Theoretical
8.
Int J Biol Macromol ; 278(Pt 3): 134947, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39173803

ABSTRACT

This study aimed to optimize the extraction of Hericium erinaceus polysaccharides (HEP) using ultrasound-assisted enzymatic extraction combined with Plackett-Burman design (PBD) and response surface methodology (RSM). The optimal extraction conditions were identified as: 33 min extraction time, 30:1 liquid to material ratio, 38 °C extraction temperature, 9 g/kg cellulase amount, pH 4, and 20 % ethanol concentration. Under these conditions, the extraction yield of HEP was 5.87 ± 0.16 %, consistent with the predicted results. Additionally, the potential immunomodulatory activity of HEP on RAW 264.7 macrophage was evaluated. The results revealed that HEP improved the immunostimulatory activity of RAW264.7 cells, evident from increased production of IL-6 and TNF-α. These findings suggest that HEP is capable of enhancing the immune activity of RAW 264.7 macrophage.


Subject(s)
Hericium , Macrophages , Mice , Animals , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Hericium/chemistry , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/isolation & purification , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/isolation & purification , Tumor Necrosis Factor-alpha/metabolism , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Interleukin-6/metabolism
9.
J Nanobiotechnology ; 22(1): 521, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39210346

ABSTRACT

Tissue-derived extracellular vesicles (EVs) are emerging as pivotal players to maintain organ homeostasis, which show promise as a next-generation candidate for medical use with extensive source. However, the detailed function and therapeutic potential of tissue EVs remain insufficiently studied. Here, through bulk and single-cell RNA sequencing analyses combined with ultrastructural tissue examinations, we first reveal that in situ liver tissue EVs (LT-EVs) contribute to the intricate liver regenerative process after partial hepatectomy (PHx), and that hepatocytes are the primary source of tissue EVs in the regenerating liver. Nanoscale and proteomic profiling further identify that the hepatocyte-specific tissue EVs (Hep-EVs) are strengthened to release with carrying proliferative messages after PHx. Moreover, targeted inhibition of Hep-EV release via AAV-shRab27a in vivo confirms that Hep-EVs are required to orchestrate liver regeneration. Mechanistically, Hep-EVs from the regenerating liver reciprocally stimulate hepatocyte proliferation by promoting cell cycle progression through Cyclin-dependent kinase 1 (Cdk1) activity. Notably, supplementing with Hep-EVs from the regenerating liver demonstrates translational potential and ameliorates insufficient liver regeneration. This study provides a functional and mechanistic framework showing that the release of regenerative Hep-EVs governs rapid liver regeneration, thereby enriching our understanding of physiological and endogenous tissue EVs in organ regeneration and therapy.


Subject(s)
Cell Proliferation , Extracellular Vesicles , Hepatectomy , Hepatocytes , Liver Regeneration , Liver , Liver Regeneration/physiology , Extracellular Vesicles/metabolism , Hepatocytes/metabolism , Animals , Liver/metabolism , Mice , Humans , Male , Mice, Inbred C57BL , Regenerative Medicine/methods , CDC2 Protein Kinase/metabolism , Proteomics
10.
EBioMedicine ; 107: 105294, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39178744

ABSTRACT

Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid and significant decrease in renal function that can arise from various etiologies, and is associated with high morbidity and mortality. The renal tubular epithelial cells (TECs) represent the central cell type affected by AKI, and their notable regenerative capacity is critical for the recovery of renal function in afflicted patients. The adaptive repair process initiated by surviving TECs following mild AKI facilitates full renal recovery. Conversely, when injury is severe or persistent, it allows the TECs to undergo pathological responses, abnormal adaptive repair and phenotypic transformation, which will lead to the development of renal fibrosis. Given the implications of TECs fate after injury in renal outcomes, a deeper understanding of these mechanisms is necessary to identify promising therapeutic targets and biomarkers of the repair process in the human kidney.


Subject(s)
Acute Kidney Injury , Epithelial Cells , Kidney Tubules , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Humans , Epithelial Cells/metabolism , Kidney Tubules/pathology , Kidney Tubules/metabolism , Animals , Biomarkers , Fibrosis , Regeneration
11.
Chem Mater ; 36(12): 6053-6061, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947978

ABSTRACT

Phase-pure polycrystalline Ba4RuMn2O10 was prepared and determined to adopt the noncentrosymmetric polar crystal structure (space group Cmc21) based on results of second harmonic generation, convergent beam electron diffraction, and Rietveld refinements using powder neutron diffraction data. The crystal structure features zigzag chains of corner-shared trimers, which contain three distorted face-sharing octahedra. The three metal sites in the trimers are occupied by disordered Ru/Mn with three different ratios: Ru1:Mn1 = 0.202(8):0.798(8), Ru2:Mn2 = 0.27(1):0.73(1), and Ru3:Mn3 = 0.40(1):0.60(1), successfully lowering the symmetry and inducing the polar crystal structure from the centrosymmetric parent compounds Ba4T3O10 (T = Mn, Ru; space group Cmca). The valence state of Ru/Mn is confirmed to be +4 according to X-ray absorption near-edge spectroscopy. Ba4RuMn2O10 is a narrow bandgap (∼0.6 eV) semiconductor exhibiting spin-glass behavior with strong magnetic frustration and antiferromagnetic interactions.

12.
Front Cell Infect Microbiol ; 14: 1399732, 2024.
Article in English | MEDLINE | ID: mdl-39006743

ABSTRACT

Tigecycline serves as a last-resort antimicrobial agent against severe infections caused by multidrug-resistant bacteria. Tet(X) and its numerous variants encoding flavin-dependent monooxygenase can confer resistance to tigecycline, with tet(X4) being the most prevalent variant. This study aims to investigate the prevalence and characterize tigecycline resistance gene tet(X) in E. coli isolates from various origins in Yangzhou, China, to provide insights into tet(X) dissemination in this region. In 2022, we tested the presence of tet(X) in 618 E. coli isolates collected from diverse sources, including patients, pig-related samples, chicken-related samples, and vegetables in Yangzhou, China. The antimicrobial susceptibility of tet(X)-positive E. coli isolates was conducted using the agar dilution method or the broth microdilution method. Whole genome sequencing was performed on tet(X)-positive strains using Illumina and Oxford Nanopore platforms. Four isolates from pig or pork samples carried tet(X4) and exhibited resistance to multiple antimicrobial agents, including tigecycline. They were classified as ST542, ST10, ST761, and ST48, respectively. The tet(X4) gene was located on IncFIA8-IncHI1/ST17 (n=2), IncFIA18-IncFIB(K)-IncX1 (n=1), and IncX1 (n=1) plasmids, respectively. These tet(X4)-carrying plasmids exhibited high similarity to other tet(X4)-bearing plasmids with the same incompatible types found in diverse sources in China. They shared related genetic environments of tet(X4) associated with ISCR2, as observed in the first identified tet(X4)-bearing plasmid p47EC. In conclusion, although a low prevalence (0.65%) of tet(X) in E. coli strains was observed in this study, the horizontal transfer of tet(X4) among E. coli isolates mediated by pandemic plasmids and the mobile element ISCR2 raises great concerns. Thus, heightened surveillance and immediate action are imperative to curb this clinically significant resistance gene and preserve the efficacy of tigecycline.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Microbial Sensitivity Tests , Tigecycline , Tigecycline/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , China , Anti-Bacterial Agents/pharmacology , Swine , Animals , Escherichia coli Infections/microbiology , Humans , Plasmids/genetics , Chickens/microbiology , Whole Genome Sequencing , Drug Resistance, Multiple, Bacterial/genetics , Vegetables/microbiology , Escherichia coli Proteins/genetics
13.
Virology ; 598: 110188, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059190

ABSTRACT

Feline bocavirus (FBoV) is a globally distributed linear, single-stranded DNA virus infect cats, currently classified into three distinct genotypes. Although FBoV can lead to systemic infections, its complete pathogenic potential remains unclear. In this study, 289 blood samples were collected from healthy cats in Harbin, revealing an overall FBoV prevalence of 12.1%. Notably, genotypes 1 and 3 of FBoV were found co-circulating among the cat population in Harbin. Additionally, recombination events were detected, particularly in the newly discovered NG/104 and DL/102 strains. Furthermore, negative selection sites were predominantly observed across the protein coding genes of FBoV. These findings suggest a co-circulation of genetically diverse FBoV strains among cats in Harbin, indicate that purifying selection is the primary driving force shaping the genomic evolution of FBoV, and also underscore the importance of comprehensive surveillance efforts to enhance our understanding of the epidemiology and evolutionary characteristics of FBoV.


Subject(s)
Bocavirus , Cat Diseases , Genetic Variation , Genotype , Parvoviridae Infections , Phylogeny , Cats , Animals , China/epidemiology , Cat Diseases/virology , Cat Diseases/epidemiology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvoviridae Infections/epidemiology , Bocavirus/genetics , Bocavirus/classification , Bocavirus/isolation & purification , Prevalence , Recombination, Genetic , Genome, Viral , Evolution, Molecular
14.
World Allergy Organ J ; 17(7): 100926, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39040084

ABSTRACT

Background: Compliance to sublingual immunotherapy (SLIT) is generally low, resulting in reduced short- and long-term clinical efficacy. Compliance is a critical factor determining the success of allergic rhinitis (AR) treatment. Objective: To analyze the compliance of patients with house dust mite (HDM)-induced AR to SLIT and the impact of coronavirus disease 2019 (COVID-19) on compliance. Methods: The clinical data of 3117 patients with HDM-induced AR who started SLIT between July 2018 and April 2022 were retrospectively reviewed. We assessed the reasons for non-compliance and the changes in non-compliance during the COVID-19 pandemic compared to the pre-pandemic period. Results: Of 3117 patients, 507 (16.27%) patients (ages, 5-67 years) were identified as non-compliant. The most common reason for non-compliance was poor efficacy (27.22%). The non-compliance rate was highest during 24-36 months of SLIT (28.13%, 153/544), followed by 12-24 months (7.02%, 91/1296). Non-compliance was significantly higher in adolescents/adults than in children (P = 0.000). Although the generalized linear model analysis indicated that compliance was affected by the COVID-19 pandemic during 3-6 months of SLIT, the overall compliance to SLIT was not significantly affected by the pandemic, according to the Kaplan-Meier survival analysis. Conclusions: The non-compliance rate of SLIT in this study was low, and poor efficacy was the most common reason for non-compliance. The compliance of adolescents/adults was lower than that of children. The COVID-19 pandemic did not significantly impact compliance to SLIT, which is an appropriate strategy for the home treatment of AR patients during major public health events.

15.
Chem Asian J ; : e202400575, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031934

ABSTRACT

The intensive interest in expanded porphyrins can be attributed to their appealing photoelectric and coordination behavior. In this work, an N-confused heptaphyrin 1 was synthesized by an acid-catalyzed [3+4] condensation reaction. The introduction of an N-confused pyrrolic unit into the heptaphyrin macrocycle led to the formation of a figure-eight-like conformation with nonsymmetrical "NNNN" and "NNNC" coordination cavities employable for bimetallic coordination. As a result, chelation of 1 with Zn(II) and Cu(II) afforded mono-Zn(II) complex 2 and bis-Cu(II) complex 3, respectively, with the metal atoms exhibiting distorted square-planar geometries. In complex 3, an oxygen atom is attached to the α-C atom of N-confused pyrrole D, and thus the N and C atoms of ring D participate in coordination within the two cavities. Interestingly, treatment of 1 with Cs2CO3 in MeOH resulted in regioselective substitution of all the seven para-F atoms in the meso-C6F5 groups as well as the α-H of ring D by eight methoxy moieties. Complex 3 displays a red-shifted absorption band edge of ca. 2200 nm, compared to that of ca. 1600 nm observed for 1. This work provides an example of incorporating an N-confused pyrrole to construct expanded porphyrins with distinctive coordination behavior and tunable NIR absorption.

16.
World J Clin Cases ; 12(21): 4777-4782, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39070846

ABSTRACT

BACKGROUND: Almost all cases of cervical cancer can be attributed to human papillomavirus (HPV) infection. The loop electrosurgical excision procedure (LEEP) is widely used to treat HPV-mediated disease; thus, cervical cancer is highly preventable. However, LEEP does not necessarily clear HPV rapidly and may affect the accuracy of the results of ThinPrep cytology test (TCT) and cervical biopsy due to the formation of cervical scars. CASE SUMMARY: A 40-year-old woman underwent LEEP for cervical intraepithelial neoplasia grade 1 approximately 10 years ago. Subsequent standard cervical cancer screening suggested persistent HPV-52 infection, but TCT results were negative. Cervical biopsy under colposcopy was performed thrice over a 10-year period, yielding negative pathology results. She developed abnormal vaginal bleeding after sexual activity, persisting for approximately 1 year, and underwent hysteroscopy in our hospital. Histopathologic evaluation confirmed adenocarcinoma in situ of the uterine cervix. CONCLUSION: Patients with long-term persistent, high-risk HPV infection and negative pathology results of cervical biopsy after LEEP are at risk of cervical cancer. Hysteroscopic resection of cervical canal tissue is recommended as a supplement to cervical biopsy because it helps define the lesion site and may yield a pathologic diagnosis.

17.
Am J Transl Res ; 16(6): 2525-2532, 2024.
Article in English | MEDLINE | ID: mdl-39006285

ABSTRACT

PURPOSE: To investigate the prevalence of occupational lower back pain (OLBP) among medical workers and identify the contributing factors. METHODS: An electronic questionnaire was distributed to medical workers at Yuebei People's Hospital to gather information on various factors, including gender, age, body mass index (BMI), length of employment, job role, education level, professional title, marital status, fertility status, frequency of night shift, weight lifting daily, duration of daily standing at work, frequency of bending, work-related stress, experience with low back protection training, and frequency of waist exercises. Univariate and multivariate logistic regression analyses were conducted to identify the factors associated with OLBP in medical workers. RESULTS: Out of the 98 medical workers surveyed, 67 experienced OLBP (68.37%). The results of multivariate logistic regression analysis revealed that working for more than 5 years, holding a nursing position, and lacking training in low back protection were significant risk factors for developing OLBP in medical workers (all P<0.05). CONCLUSION: OLBP is a prevalent issue among medical workers, and various factors such as length of employment, job role, and training in low back protection can influence its occurrence.

18.
Anal Chem ; 96(24): 9961-9968, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38838250

ABSTRACT

In this study, a novel europium dual-ligand metal-organic gel (Eu-D-MOGs) with high-efficient anodic annihilation electrochemiluminescence (ECL) was synthesized as an ECL emitter to construct a biosensor for ultrasensitive detection of microRNA-221 (miR-221). Impressively, compared to the ECL signal of europium single-ligand metal-organic gels (Eu-S-MOGs), the ECL signal of Eu-D-MOGs was significantly improved since the two organic ligands could jointly replace the H2O and coordinate with Eu3+, which could remarkably reduce the nonradiative vibrational energy transfer caused by the coordination between H2O and Eu3+ with a high coordination demand. In addition, Eu-D-MOGs could be electrochemically oxidized to Eu-D-MOGs•+ at 1.45 V and reduced to Eu-D-MOGs•- at 0.65 V to achieve effective annihilation of ECL, which overcame the side reaction brought by the remaining emitters at negative potential. This benefited from the annihilation ECL performance of the central ion Eu3+ caused by its redox in the electrochemical process. Furthermore, the annihilation ECL signal of Eu3+ could be improved by sensitizing Eu3+ via the antenna effect. In addition, combined with the improved rolling circle amplification-assisted strand displacement amplification strategy (RCA-SDA), a sensitive biosensor was constructed for the sensitive detection of miR-221 with a low detection limit of 5.12 aM and could be successfully applied for the detection of miR-221 in the lysate of cancer cells. This strategy offered a unique approach to synthesizing metal-organic gels as ECL emitters without a coreactant for the construction of ECL biosensing platforms in biomarker detection and disease diagnosis.


Subject(s)
Electrochemical Techniques , Electrodes , Europium , Gels , Luminescent Measurements , MicroRNAs , Europium/chemistry , MicroRNAs/analysis , Electrochemical Techniques/methods , Ligands , Gels/chemistry , Biosensing Techniques/methods , Limit of Detection , Humans
19.
Integr Med Res ; 13(2): 101045, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831890

ABSTRACT

Background: Post-viral olfactory dysfunction (PVOD) is the common symptoms of long COVID, lacking of effective treatments. Traditional Chinese medicine (TCM) is claimed to be effective in treating olfactory dysfunction, but the evidence has not yet been critically appraised. We conducted a systematic review to evaluate the effectiveness and safety of TCM for PVOD. Methods: We searched eight databases to identified clinical controlled studies about TCM for PVOD. The Cochrane risk of bias tools and GRADE were used to evaluate the quality of evidence. Risk ratio (RR), mean differences (MD), and 95 % confidence interval (CI), were used for effect estimation and RevMan 5.4.1 was used for data analysis. Results: Six randomized controlled trials (RCTs) (545 participants), two non-randomized controlled trials (non-RCTs) (112 participants), and one retrospective cohort study (30 participants) were included. The overall quality of included studies was low. Acupuncture (n = 8) and acupoint injection (n = 3) were the mainly used TCM therapies. Five RCTs showed a better effect in TCM group. Four trials used acupuncture, and three trials used acupoint injection. The results of two non-RCTs and one cohort study were not statistically significant. Two trials reported mild to moderate adverse events (pain and brief syncope caused by acupuncture or acupoint injection). Conclusions: Limited evidence focus on acupuncture and acupoint injection for PVOD and suggests that acupuncture and acupoint injection may be effective in improving PVOD. More well-designed trials should focus on acupuncture to confirm the benefit. Protocol registration: The protocol of this review was registered at PROSPERO: CRD42022366776.

20.
Opt Lett ; 49(11): 3226-3229, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824369

ABSTRACT

We propose and demonstrate a data fragment multipath transmission scheme to achieve a secure optical communication based on polarization regulation. A dual-polarization Mach-Zehnder modulator (DPMZM) is driven by digital signals which are scattered by field-programmable gate array (FPGA) and transmitted in multiple paths. By utilizing two orthogonal polarization states, we have achieved a signal transmission under different optical parameters, and the transmission rate of the two paths can reach over 10 Gbps through a 20 km fiber with 2.5 Gbps hopping rate. In addition, we establish a theoretical model to analyze the security of the system and simulate brute force cracking; the probability of cracking the minimum information unit is 1.53 × 10-53. This proves that it is difficult to obtain a user data even using the fastest computers. Our scheme has provided, to our knowledge, a new approach for physical layer security.

SELECTION OF CITATIONS
SEARCH DETAIL