Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Psychiatr Res ; 174: 172-180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640796

ABSTRACT

Growing evidence suggested that individuals with autism spectrum disorder (ASD) associated with stroke and cardiovascular disease (CVD). However, the causal association between ASD and the risk of stroke and CVD remains unclear. To validate this, we performed two-sample Mendelian randomization (MR) and two-step mediation MR analyses, using relevant genetic variants sourced from the largest genome-wide association studies (GWASs). Two-sample MR evidence indicated causal relationships between ASD and any stroke (OR = 1.1184, 95% CI: 1.0302-1.2142, P < 0.01), ischemic stroke (IS) (OR = 1.1157, 95% CI: 1.0237-1.2160, P = 0.01), large-artery atherosclerotic stroke (LAS) (OR = 1.2902, 95% CI: 1.0395-1.6013, P = 0.02), atrial fibrillation (AF) (OR = 1.0820, 95% CI: 1.0019-1.1684, P = 0.04), and heart failure (HF) (OR = 1.1018, 95% CI: 1.0007-1.2132, P = 0.05). Additionally, two-step mediation MR suggested that type 2 diabetes mellitus (T2DM) partially mediated this effect (OR = 1.14, 95%CI: 1.02-1.28, P = 0.03). The mediated proportion were 10.96% (95% CI: 0.58%-12.10%) for any stroke, 11.77% (95% CI: 10.58%-12.97%) for IS, 10.62% (95% CI: 8.04%-13.20%) for LAS, and 7.57% (95% CI: 6.79%-8.36%) for HF. However, no mediated effect was observed between ASD and AF risk. These findings have implications for the development of prevention strategies and interventions for stroke and CVD in patients with ASD.


Subject(s)
Autism Spectrum Disorder , Cardiovascular Diseases , Genome-Wide Association Study , Mendelian Randomization Analysis , Stroke , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/epidemiology , Stroke/genetics , Stroke/epidemiology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/epidemiology , Genetic Predisposition to Disease
2.
BMC Psychiatry ; 24(1): 129, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365642

ABSTRACT

BACKGROUND: Growing evidence suggested that particulate matter (PM) exhibit an increased risk of autism spectrum disorder (ASD). However, the causal association between PM and ASD risk remains unclear. METHODS: We performed two-sample Mendelian randomization (MR) analyses, using instrumental variables (IVs) sourced from the largest genome-wide association studies (GWAS) databases. We employed three MR methods: inverse-variance weighted (IVW), weighted median (WM), and MR-Egger, with IVW method serving as our primary MR method. Sensitivity analyses were performed to ensure the stability of these findings. RESULTS: The MR results suggested that PM2.5 increased the genetic risk of ASD (ß = 2.41, OR = 11.13, 95% CI: 2.54-48.76, P < 0.01), and similar result was found for PM2.5 absorbance (ß = 1.54, OR = 4.67, 95% CI: 1.21-18.01, P = 0.03). However, no such association was found in PM10 (ß = 0.27, OR = 1.30, 95% CI: 0.72-2.36, P = 0.38). After adjusting for the false discovery rate (FDR) correction, our MR results remain consistent. Sensitivity analyses did not find significant heterogeneity or horizontal pleiotropy. CONCLUSIONS: Our findings indicate that PM2.5 is a potential risk factor for ASD. Effective strategies to mitigate air pollutants might lead to a reduced incidence of ASD.


Subject(s)
Autism Spectrum Disorder , Particulate Matter , Humans , Particulate Matter/adverse effects , Autism Spectrum Disorder/genetics , Genome-Wide Association Study , Risk Factors , Databases, Factual
3.
Eur J Nutr ; 63(3): 977-986, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38265752

ABSTRACT

PURPOSE: The previous studies have suggested that serum homocysteine (Hcy) and vitamin B levels are potentially related to autism spectrum disorder (ASD). However, the causality between their concentrations and ASD risk remains unclear. To elucidate this genetic association, we used a Mendelian randomization (MR) design. METHODS: For this MR analysis, 47 single-nucleotide polymorphisms (SNPs)-13 related to Hcy, 13 to folate, 14 to vitamin B6, and 7 to vitamin B12-were obtained from a large-scale Genome-Wide Association Studies (GWAS) database and employed as instrumental variables (IVs). Our study used three approaches to calculate the MR estimates, including inverse-variance weighted (IVW) method, MR-Egger method, and weighted median (WM) method. Among these, the IVW method served as our primary MR method. False discovery rate (FDR) was implemented to correct for multiple comparisons. We also performed a series of sensitivity analyses, including Cochran's Q test, MR-Egger's intercept, MR-PRESSO, leave-one-out analysis, and the funnel plot. RESULTS: Univariable Mendelian randomization (UVMR) analysis revealed a statistical association between serum vitamin B12 levels and ASD risk (OR = 1.68, 95% CI 1.12-2.52, P = 0.01) using the IVW method. However, neither the WM method (OR = 1.57, 95% CI 0.93-2.66, P = 0.09) nor the MR-Egger method (OR = 2.33, 95% CI 0.48-11.19, P = 0.34) was significantly association with higher levels of serum vitamin B12 and ASD risk. Additionally, we found no evidence of causal relationships between serum levels of vitamin B6, folate, Hcy, and ASD risk. After correcting for the FDR, the causality between serum vitamin B12 levels and ASD risk remained significant (q value = 0.0270). Multivariate Mendelian randomization (MVMR) analysis indicated an independent association between elevated serum vitamin B12 levels and the risk of ASD (OR = 1.74, 95% CI 1.03-2.95, P = 0.03) using the IVW method, but this finding was inconsistent when using the WM method (OR = 1.73, 95% CI 0.89-3.36, P = 0.11) and MR-Egger method (OR = 1.60, 95% CI 0.95-2.71, P = 0.08). Furthermore, no causal associations were observed for serum levels of vitamin B6 and folate in MVMR analysis. Sensitivity analyses confirmed that these results were reliable. CONCLUSION: Our study indicated that elevated serum vitamin B12 levels might increase the risk of ASD. The potential implications of our results for ASD risk warrant validation in randomized clinical trials.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Autism Spectrum Disorder/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Vitamins , Folic Acid , Vitamin B 6 , Vitamin B 12 , Homocysteine
4.
Chem Biol Interact ; 339: 109430, 2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33676887

ABSTRACT

Connexin-40 (Cx40) and Cx43 are the principal components of gap junctions. Dysregulation of connexin expression is clinically related to cardiac pathologies. 25-Hydroxy protopanaxadiol [25-OH-PPD, 20 (R)-dammarane-3ß, 12ß, 20, 25-tetrol], known as AD2, is a novel protopanaxadiol extracted from Panax ginseng that exhibits many pharmacological activities, but its effects on cardiac gap junctions are poorly understood. The aim of this study was to evaluate the effects of AD2 on angiotensin II (Ang II)-induced Cx40 and Cx43 dysregulation. In this study, isolated beating rat atria were perfused with Ang II (5 µM) for 1 h to induce Cx40 and Cx43 dysregulation. The effects of AD2 (1.6, 16, and 160 µg/100 g body weight) on Ang II-induced hemodynamics in rats were analyzed by biological recorder, and changes in proteins levels were analyzed by western blotting. The results showed that AD2 ameliorated Ang II-induced hyper hemodynamics and abnormal P-waves, and prevented fibrotic collagen deposition (3.77% ± 1.64%-26.31% ± 1.64% with Ang II, 5.76% ± 0.94% with AD2). Ang II upregulated expression of nuclear factor kappa B, activator protein 1, and transforming growth factor ß1, and downregulated of Cx40 and Cx43 expression, which were inhibited by AD2 concomitantly with increased of AMP-activated protein kinase (AMPK) expression via liver kinase B1 activation. The present findings suggest that AD2 inhibited Ang II-induced dysregulation of Cx40 and Cx43 via activation of AMPK signaling, thus highlighting the promise and utility of AD2 for treatment of connexin dysregulation-related heart disease.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Angiotensin II/pharmacology , Connexin 43/metabolism , Connexins/metabolism , Ginsenosides/pharmacology , Signal Transduction/drug effects , Animals , Down-Regulation/drug effects , Fibrosis/metabolism , Gap Junctions/drug effects , Gap Junctions/metabolism , Ginsenosides/metabolism , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Transcription Factor AP-1/metabolism , Transforming Growth Factor beta1/metabolism , Up-Regulation/drug effects , Gap Junction alpha-5 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...