Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 660: 916-922, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38280284

ABSTRACT

Intermetallic compounds are emerging as promising oxygen reduction reaction (ORR) catalysts for fuel cells due to their typically higher activity and durability compared to disordered alloys. However, the preparation of intermetallic catalysts often requires high-temperature annealing, which unfortunately leads to adverse sintering of the metal nanoparticles. Herein, we develop a scalable site-selective sulfur anchoring strategy that effectively suppresses alloy sintering, ensuring the formation of efficient intermetallic electrocatalysts with small sizes and high ordering degrees. The alloy-support interactions are precisely modulated by selectively modifying the alloy-support interfaces with oxidized sulfur species, thus simultaneously blocking both the nanoparticle migration and Oswald ripening pathways for sintering. Using this strategy, sub-5 nm PtCo intermetallic electrocatalysts enclosed by two atomic layers of Pt shells have been successfully prepared even at a metal loading higher than 30 wt%. The intermetallic catalysts exhibit excellent ORR performances in both rotating disk electrode and membrane electrode assembly conditions with a mass activity of 1.28 A mgPt-1 at 0.9 V (vs. RHE) and a power density of 1.0 W cm-2 at a current density of 1.5 A cm-2. The improved performances result from the enhanced Pt-Co electronic interactions and compressive surface strain generated by the highly ordering structure, while the atomic Pt shells prevent the dissolution of Co under highly acidic conditions. This work provides new insights to inhibit the sintering of nanoalloys and would promote the scalable synthesis and applications of platinum-based intermetallic catalysts.

2.
J Colloid Interface Sci ; 650(Pt B): 1518-1524, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37487282

ABSTRACT

Palladium-based nanocatalysts play an important role in catalyzing the cathode oxygen reduction reaction (ORR) for fuel cells working under alkaline conditions, but the performance still needs to be improved to meet the requirements for large-scale applications. Herein, Au@Pd core-shell nanowires have been developed by coating Pd atomic layers on ultrafine gold nanowires and display outstanding electrocatalytic performance towards alkaline ORR. It is found that Pd overlayers with atomic thickness can be coated on 3 nm Au nanowires under CO atmosphere and completely cover the surfaces. The obtained ultrafine Au@Pd nanowires exhibit an electrochemical active area (ECSA) of 68.5 m2/g and a mass activity of 0.91 A/mg (at 0.9 V vs. RHE), which is around 3.1 and 15.2 times higher than that of commercial Pd/C. The activity loss of the ultrafine Au@Pd nanowire after 10,000 cycles of accelerated degradation tests is only ∼20 %, demonstrating its much better stability compared to commercial Pd/C. Further characterizations combined with density functional theory (DFT) calculations demonstrate that the electronic interactions between Pd atomic layers and underlying Au can increase the electronic density of Pd and promote the efficient activation of oxygen, thus leading to the improved ORR performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...