Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Regen Ther ; 27: 279-289, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38617444

ABSTRACT

Introduction: Cell transplantation is an emerging and effective therapeutic approach for enhancing uterine adhesions caused by endometrial damage. Currently, human umbilical cord blood mononuclear cells (HUCBMCs) have been extensively for tissue and organ regeneration. However, their application in endometrial repair remains unexplored. Our investigation focuses on the utilization of HUCBMCs for treating endometrial injury. Methods: The HUCBMCs were isolated from health umbilical cord blood, and co-cultured with the injured endometrial stromal cells and injured endometrial organoids. The cell proliferation and apoptosis were measured by cck8 assays and flow cytometry. Western blotting was used to detect the expression of PTEN, AKT and p-AKT. Immunofluorescence assay revealed expression levels of epithelial-mesenchymal transition (EMT) -related markers such as E-cadherin, N-cadherin, and TGF-ß1. The endometrial thickness, fibrosis level, and glandular number were examined after the intravenous injection of HUCBMCs in mouse endometrial models. Immunohistochemistry was employed to assess changes in growth factors vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1) as well as fibrosis markers α-SMA and COL1A1. Additionally, expressions of EMT-related proteins E-cadherin and N-cadherin were evaluated. Results: HUCBMCs significantly improved the proliferation and reduced the apoptosis of damaged endometrial stromal cells (ESCs), accompanied by up-regulation of phospho-AKT expression. HUCBMCs increased endometrial thickness and glandular count while decreasing fibrosis and EMT-related markers in mouse endometrial models. Furthermore, EMT-related markers of ESCs and endometrial organoids were significantly decreased. Conclusions: Our findings suggest that HUCBMCs plays a pivotal role in mitigating endometrial injury through the attenuation of fibrosis. HUCBMCs may exert a reverse effect on the EMT process during the endometrium reconstruction.

2.
J Cell Biol ; 223(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38466167

ABSTRACT

Focal adhesions (FAs) are transmembrane protein assemblies mediating cell-matrix connection. Although protein liquid-liquid phase separation (LLPS) has been tied to the organization and dynamics of FAs, the underlying mechanisms remain unclear. Here, we experimentally tune the LLPS of PXN/Paxillin, an essential scaffold protein of FAs, by utilizing a light-inducible Cry2 system in different cell types. In addition to nucleating FA components, light-triggered PXN LLPS potently activates integrin signaling and subsequently accelerates cell spreading. In contrast to the homotypic interaction-driven LLPS of PXN in vitro, PXN condensates in cells are associated with the plasma membrane and modulated by actomyosin contraction and client proteins of FAs. Interestingly, non-specific weak intermolecular interactions synergize with specific molecular interactions to mediate the multicomponent condensation of PXN and are efficient in promoting FA assembly and integrin signaling. Thus, our data establish an active role of the PXN phase transition into a condensed membrane-associated compartment in promoting the assembly/maturation of FAs.


Subject(s)
Focal Adhesions , Paxillin , Phase Separation , Humans , Actin Cytoskeleton , Focal Adhesions/metabolism , Integrins/metabolism , Paxillin/chemistry , Paxillin/metabolism
3.
EMBO Rep ; 24(11): e56850, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37846507

ABSTRACT

The remodeling and stiffening of the extracellular matrix (ECM) is a well-recognized modulator of breast cancer progression. How changes in the mechanical properties of the ECM are converted into biochemical signals that direct tumor cell migration and metastasis remain poorly characterized. Here, we describe a new role for the autophagy-inducing serine/threonine kinases ULK1 and ULK2 in mechanotransduction. We show that ULK1/2 activity inhibits the assembly of actin stress fibers and focal adhesions (FAs) and as a consequence impedes cell contraction and migration, independent of its role in autophagy. Mechanistically, we identify PXN/paxillin, a key component of the mechanotransducing machinery, as a direct binding partner and substrate of ULK1/2. ULK-mediated phosphorylation of PXN at S32 and S119 weakens homotypic interactions and liquid-liquid phase separation of PXN, impairing FA assembly, which in turn alters the mechanical properties of breast cancer cells and their response to mechanical stimuli. ULK1/2 and the well-characterized PXN regulator, FAK/Src, have opposing functions on mechanotransduction and compete for phosphorylation of adjacent serine and tyrosine residues. Taken together, our study reveals ULK1/2 as important regulator of PXN-dependent mechanotransduction.


Subject(s)
Breast Neoplasms , Humans , Female , Paxillin/metabolism , Mechanotransduction, Cellular , Phosphorylation , Cell Movement , Serine/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
4.
Ann Med ; 55(2): 2261964, 2023 12.
Article in English | MEDLINE | ID: mdl-37756386

ABSTRACT

Although vaccination with the Coronavirus disease 2019 vaccine is important and effective in the prevention of SARS-CoV-2 infection, the public expressed concerns regarding the adverse effects of vaccine on fertility. Some reviews have focused on it, they have been unable to collect sufficient research data because of the earlier publication period. As relevant evidence has gradually increased, we reviewed these studies from the perspectives of males, females with or without pregnancy, and different vaccine types. The results suggest that although males may experience fluctuations in semen parameters within their physiological ranges after receiving the vaccine, it has not yet reached a level of influence on the partner's pregnancy probability. As to female without pregnancy, it is believed that vaccination will not affect fertility; however, more research is needed to explore the short-term impact. Vaccination during any trimester is considered safe in pregnant women.


Subject(s)
COVID-19 Vaccines , COVID-19 , Fertility , Female , Humans , Male , Pregnancy , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Pandemics , SARS-CoV-2 , Vaccination/adverse effects
5.
J Mol Biol ; 435(11): 167954, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37330284

ABSTRACT

The flagellum is a sophisticated nanomachine responsible for motility in Gram-negative bacteria. Flagellar assembly is a strictly choreographed process, in which the motor and export gate are formed first, followed by the extracellular propeller structure. Extracellular flagellar components are escorted to the export gate by dedicated molecular chaperones for secretion and self-assembly at the apex of the emerging structure. The detailed mechanisms of chaperone-substrate trafficking at the export gate remain poorly understood. Here, we structurally characterized the interaction of Salmonella enterica late-stage flagellar chaperones FliT and FlgN with the export controller protein FliJ. Previous studies showed that FliJ is absolutely required for flagellar assembly since its interaction with chaperone-client complexes controls substrate delivery to the export gate. Our biophysical and cell-based data show that FliT and FlgN bind FliJ cooperatively, with high affinity and on specific sites. Chaperone binding completely disrupts the FliJ coiled-coil structure and alters its interactions with the export gate. We propose that FliJ aids the release of substrates from the chaperone and forms the basis of chaperone recycling during late-stage flagellar assembly.


Subject(s)
Bacterial Proteins , Flagella , Molecular Chaperones , Salmonella enterica , Bacterial Proteins/metabolism , Cytoplasm/metabolism , Flagella/metabolism , Molecular Chaperones/metabolism , Protein Transport , Salmonella enterica/metabolism
6.
Heliyon ; 9(5): e15833, 2023 May.
Article in English | MEDLINE | ID: mdl-37215803

ABSTRACT

Background: It has been reported that the use of glucocorticoids may be able to improve clinical pregnancy rates in patients receiving in vitro fertilization and embryo transfer (IVF-ET). The purpose of this study was to investigate the association between glucocorticoid use and clinical pregnancy rate in IVF-ET patients. Methods: This study has been registered on the International Register of Prospective Systems Evaluation (PROSPERO) (ID: CRD42022375427). A thorough and detailed search of databases including PubMed, Web of Science, Embase, and Cochrane Library was conducted to identify eligible studies up to October 2022. Quality assessment was conducted on the modified Jadad Scoring Scale and Newcastle-Ottawa Scale, and the inter-study heterogeneity was estimated by Q test and I2 test. Combined hazard ratios with 95% CI were calculated using random effects or fixed effects models based on heterogeneity. Meanwhile, Begg's and Egger's tests were used to detect the existence of publication bias, the leave-one-out method was used for sensitivity analysis and multiple subgroup analyses were conducted. Results: Seventeen studies involving 3056 IVF-ET cycles were included. We found that glucocorticoid use was associated with a higher IVF-ET pregnancy rate (OR = 1.86, 95% CI = 1.27-2.74, P = 0.002). In the subgroup analysis, studies of different regions and different study types all showed similar results that glucocorticoid is beneficial to improve the clinical pregnancy rate of patients with IVF-ET, and patients with positive autoantibodies and patients receiving IVF-ET multiple times also showed the same results. However, there was no significant change in clinical pregnancy rates in the seven studies with negative autoantibodies and in the seven studies with initial IVF-ET treatment. The results of the 12 medium-acting glucocorticoids and 4 long-acting glucocorticoids were also generally consistent with each other. There was no statistical difference in subgroup analysis of whether patients had endometriosis or not. Conclusion: Appropriate use of glucocorticoids is beneficial for improving the clinical pregnancy rate in women receiving IVF-ET, but this result still needs to be verified by more high-quality and large sample size randomized controlled trials (RCTs).

7.
Nat Commun ; 14(1): 718, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759618

ABSTRACT

Inorganic polyphosphate (polyP) is an ancient energy metabolite and phosphate store that occurs ubiquitously in all organisms. The vacuolar transporter chaperone (VTC) complex integrates cytosolic polyP synthesis from ATP and polyP membrane translocation into the vacuolar lumen. In yeast and in other eukaryotes, polyP synthesis is regulated by inositol pyrophosphate (PP-InsP) nutrient messengers, directly sensed by the VTC complex. Here, we report the cryo-electron microscopy structure of signal-activated VTC complex at 3.0 Å resolution. Baker's yeast VTC subunits Vtc1, Vtc3, and Vtc4 assemble into a 3:1:1 complex. Fifteen trans-membrane helices form a novel membrane channel enabling the transport of newly synthesized polyP into the vacuolar lumen. PP-InsP binding orients the catalytic polymerase domain at the entrance of the trans-membrane channel, both activating the enzyme and coupling polyP synthesis and membrane translocation. Together with biochemical and cellular studies, our work provides mechanistic insights into the biogenesis of an ancient energy metabolite.


Subject(s)
Polyphosphates , Saccharomyces cerevisiae , Polyphosphates/metabolism , Cryoelectron Microscopy , Saccharomyces cerevisiae/metabolism , Cytosol/metabolism , Ion Channels/metabolism
8.
Commun Biol ; 6(1): 59, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36650277

ABSTRACT

Tumor suppressor p53 prevents tumorigenesis by promoting cell cycle arrest and apoptosis through transcriptional regulation. Dysfunction of p53 occurs frequently in human cancers. Thus, p53 becomes one of the most promising targets for anticancer treatment. A bacterial effector protein azurin triggers tumor suppression by stabilizing p53 and elevating its basal level. However, the structural and mechanistic basis of azurin-mediated tumor suppression remains elusive. Here we report the atomic details of azurin-mediated p53 stabilization by combining X-ray crystallography with nuclear magnetic resonance. Structural and mutagenic analysis reveals that the p28 region of azurin, which corresponds to a therapeutic peptide, significantly contributes to p53 binding. This binding stabilizes p53 by disrupting COP1-mediated p53 ubiquitination and degradation. Using the structure-based design, we obtain several affinity-enhancing mutants that enable amplifying the effect of azurin-induced apoptosis. Our findings highlight how the structure of the azurin-p53 complex can be leveraged to design azurin derivatives for cancer therapy.


Subject(s)
Azurin , Tumor Suppressor Protein p53 , Ubiquitination , Humans , Azurin/chemistry , Bacterial Proteins/chemistry , Peptides/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
9.
Commun Biol ; 6(1): 39, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639437

ABSTRACT

The large-scale preparation of Polyehylene terephthalate (PET) hydrolysing enzymes in low-cost is critical for the biodegradation of PET in industry. In the present study, we demonstrate that the post-translational glycosylation of Pichia pastoris makes it a remarkable host for the heterologous expression of PETase from Ideonella sakaiensis 201-F6 (IsPETase). Taking advantage of the abundant N- and O-linked glycosylation sites in IsPETase and the efficient post-translational modification in endoplasmic reticulum, IsPETase is heavily glycosylated during secretory expression with P. pastoris, which improves the specific activity and thermostability of the enzyme dramatically. Moreover, the specific activity of IsPETase increased further after the bulky N-linked polysaccharide chains were eliminated by Endo-ß-N-acetylglucosaminidase H (Endo H). Importantly, the partially deglycosylated IsPETase still maintained high thermostability because of the remaining mono- and oligo-saccharide residues on the protein molecules. Consequently, the partially deglycosylated IsPETase was able to be applied at 50 °C and depolymerized raw, untreated PET flakes completely in 2 to 3 days. This platform was also applied for the preparation of a famous variant of IsPETase, Fast-PETase, and the same result was achieved. Partially deglycosylated Fast-PETase demonstrates elevated efficiency in degrading postconsumer-PET trays under 55 °C than 50 °C, the reported optimal temperature of Fast-PETase. The present study provides a strategy to modulate thermostable IsPETase through glycosylation engineering and paves the way for promoting PET biodegradation from laboratories to factories.


Subject(s)
Burkholderiales , Hydrolases , Hydrolases/chemistry , Burkholderiales/metabolism , Protein Processing, Post-Translational , Polysaccharides
10.
Front Endocrinol (Lausanne) ; 13: 946504, 2022.
Article in English | MEDLINE | ID: mdl-36060967

ABSTRACT

Background: Polycystic ovary syndrome (PCOS), the most common heterogeneous reproductive disease afflicting women of childbearing age, has been recognized as a chronic inflammatory disease recently. Most PCOS patients have hyperandrogenism, indicating a poor prognosis and poor pregnancy outcomes. The molecular mechanism underlying PCOS development is still unknown. In the present study, we investigated the gene expression profiling characteristics of PCOS with hyperandrogenism (HA) or without hyperandrogenism (NHA) and identified immune-related factors that correlated with embryo implantation failure. Methods: PCOS and recurrent implantation failure (RIF) microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. ClueGO software was used to perform enrichment analysis of differentially expressed genes (DEGs) in PCOS with varying androgen levels. The Weighted Co-Expression Network Analysis (WGCNA) was used to identify co-expressed modules and shared gene signatures between HA PCOS and RIF. Moreover, the upregulated DEGs of HA PCOS and RIF were intersected with shared gene signatures screening by WGCNA to excavate further key prognostic biomarkers related to implantation failure of HA PCOS. The selected biomarker was verified by qRT-PCR. Results: A total of 271 DEGs were found in HA PCOS granulosa cell samples, and 720 DEGs were found in NHA PCOS. According to CuleGO enrichment analysis, DEGs in HA PCOS are enriched in immune activation and inflammatory response. In contrast, DEGs in NHA PCOS are enriched in mesenchymal cell development and extracellular space. Using WGCNA analysis, we discovered 26 shared gene signatures between HA PCOS and RIF, which were involved in corticosteroid metabolism, bone maturation and immune regulation. DAPK2 was furtherly screened out and verified to be closely related with the development of HA PCOS, acting as an independent predictor biomarker of the embryo implantation failure. DAPK2 expression was negatively correlated to the embryo implantation rate (r=-0.474, P=0.003). The immune infiltration results suggested that upregulated DAPK2 expression was closely related with NK cell infiltration and macrophage M2, playing an essential role in the pathogenesis of implantation failure in HA PCOS. Conclusion: Our research revealed the expression profiling of PCOS with different androgen levels and identified DAPK2 as a critical prognostic biomarker for implantation failure in PCOS.


Subject(s)
Hyperandrogenism , Polycystic Ovary Syndrome , Androgens , Biomarkers , Death-Associated Protein Kinases , Female , Humans , Hyperandrogenism/complications , Hyperandrogenism/pathology , Polycystic Ovary Syndrome/complications , Prognosis
11.
Methods Enzymol ; 674: 519-541, 2022.
Article in English | MEDLINE | ID: mdl-36008019

ABSTRACT

Strigolactones (SLs) are bioactive carotenoid derivatives which function as signaling molecules to regulate plant architecture, nutrient absorption and communication with other organisms. The α/ß-fold hydrolase, D14, hydrolyzes SLs, and the hydrolysis product activates D14 to bind to downstream signaling partners, including an E3 ubiquitin ligase MAX2 and SMXL6/7/8 proteins. What was not known was whether binding with one downstream partner would alter the affinity of D14 for other binding partners. Here, we developed an efficient yeast four-hybrid (Y4H) detection system and demonstrate that SL induces the interaction of D14 with both SMXL7 and MAX2 in a dose-dependent manner. Moreover, using our newly established yeast four-hybrid system, we found that the SL-induced D14 interaction with SMXL7 was strengthened by MAX2 while SMXL7 weakened the SL-induced D14 interaction with MAX2. Our findings provide novel insights into the regulatory effects of these signaling components and shed light on the molecular mechanism controlling the core SL signaling pathway. Furthermore, the heterologous yeast platform used for investigating SL complex formation has great potential to explore dynamic interactions in other signaling pathways or elucidate the unknown complex formation for biosynthesis of the parent carotenoids of SLs.


Subject(s)
Arabidopsis Proteins , Saccharomyces cerevisiae , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Gene Expression Regulation, Plant , Heterocyclic Compounds, 3-Ring , Hormones , Lactones/metabolism , Lactones/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Signal Transduction
12.
Reprod Biol Endocrinol ; 20(1): 71, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35459181

ABSTRACT

BACKGROUND: Singleton pregnancy is encouraged to reduce pregnancy complications. In addition to single embryo transfer (SET), selective and spontaneous fetal reduction (SEFR and SPFR) can also achieve singleton pregnancies. After SEFR or SPFR, an inanimate fetus remains in the uterus. It is unclear whether the inanimate fetus would adversely affect another fetus or the mother. Previous studies have focused on the differences between pre- and post-reduction. However, studies focusing on the influence of SEFR and SPFR on the remaining fetal development and maintenance of pregnancy are rare. METHODS: Materials from 5922 patients whose embryo transfer dates ranged from March 2011 to January 2021 were collected. Both the SEFR group (n = 390) and SPFR group (n = 865) had double embryos transferred (DET) and got twin pregnancies, but subsequent selective or spontaneous fetal reduction occurred. The SET group (n = 4667) had only one embryo transferred. All were singleton pregnancies on the 65th day after embryo transfer. Clinical outcomes, including pregnancy outcomes, pregnancy complications, and newborn outcomes, were compared among the three groups. RESULTS: After adjusting for age, infertility duration, types of infertility, states of embryos, body mass index, and factors affecting SET or DET decisions, multivariate regression analysis revealed that SEFR increased the risk of miscarriage (OR 2.368, 95% CI 1.423-3.939) and preterm birth (OR 1.515, 95% CI 1.114-2.060), and reduced the gestational age (ßeta -0.342, 95% CI -0.544- -0.140). SPFR increased the risk of gestational diabetes mellitus (GDM) (OR 1.657, 95% CI 1.215-2.261), preterm premature rupture of membranes (PPROM) (OR 1.649, 95% CI 1.057-2.574), and abnormal amniotic fluid volume (OR 1.687, 95% CI 1.075-2.648). Both SEFR and SPFR were associated with reduced live birth rate (OR 0.522, 95% CI 0.330-0.825; OR 0.671, 95% CI 0.459-0.981), newborn birth weight (ßeta -177.412, 95% CI -235.115--119.709; ßeta -42.165, 95% CI -83.104--1.226) as well as an increased risk of low-birth-weight newborns (OR 2.222, 95% CI 1.490-3.313; OR 1.510, 95% CI 1.092-2.087). CONCLUSIONS: DET with subsequent fetal reduction was related to poor clinical outcomes. We recommend that DET with subsequent fetal reduction should only be considered as a rescue method for multiple pregnancy patients with potential complications, and SET is more advisable.


Subject(s)
Infertility , Pregnancy Complications , Premature Birth , Female , Humans , Infant, Newborn , Pregnancy , Pregnancy Complications/etiology , Pregnancy Outcome/epidemiology , Pregnancy Reduction, Multifetal/adverse effects , Pregnancy Trimester, First , Pregnancy, Twin , Premature Birth/epidemiology , Premature Birth/etiology , Retrospective Studies
13.
Stem Cells Int ; 2022: 5744538, 2022.
Article in English | MEDLINE | ID: mdl-35422866

ABSTRACT

There are many studies on the advantages of using mesenchymal stem cells (MSCs) that secrete various paracrine factors for repairing endometrial injury. However, the stability and effectiveness of MSCs require improvement to become a viable therapy. Hepatocyte growth factor (HGF), one of the cytokines secreted by MSCs, promotes vascular repair and mesenchymal to epithelial transformation (MET). Therefore, HGF likely promotes the repair process of the endometrium. We prepared MSCs transfected with the HGF gene to explore its repair effects and mechanism using a damaged endometrium mouse model. HGF gene-transfected MSCs were prepared by electroporation. The transfected MSCs retained their cellular characteristics and significantly increased the expression of HGF (P < 0.01). HGF gene-transfected MSCs helped damaged endometrium to recover its morphological characteristics, improved proliferation and decreased apoptosis of endometrial cells, increased the expression of endometrial vascular growth-related factors, and activated phosphorylated c-Met and AKT in the mouse endometrial damage model (P < 0.05). Compared with normal MSCs, HGF gene-transfected MSCs produced a more significant effect on damaged endometrial epithelium repair by activating the HGF/c-Met and downstream signaling pathways. Our results indicate that HGF gene-transfected MSCs provide an effective and promising tool for injured endometrium therapy.

14.
Elife ; 102021 12 13.
Article in English | MEDLINE | ID: mdl-34898426

ABSTRACT

Nature has evolved many supramolecular proteins assembled in certain, sometimes even seemingly oversophisticated, morphological manners. The rationale behind such evolutionary efforts is often poorly understood. Here, we provide atomic-resolution insights into how the dynamic building of a structurally complex enzyme with higher order symmetry offers amenability to intricate regulation. We have established the functional coupling between enzymatic activity and protein morphological states of glutamine synthetase (GS), an old multi-subunit enzyme essential for cellular nitrogen metabolism. Cryo-EM structure determination of GS in both the catalytically active and inactive assembly states allows us to reveal an unanticipated self-assembly-induced disorder-order transition paradigm, in which the remote interactions between two subcomplex entities significantly rigidify the otherwise structurally fluctuating active sites, thereby regulating activity. We further show in vivo evidences that how the enzyme morphology transitions could be modulated by cellular factors on demand. Collectively, our data present an example of how assembly status transition offers an avenue for activity modulation, and sharpens our mechanistic understanding of the complex functional and regulatory properties of supramolecular enzymes.


Subject(s)
Escherichia coli/chemistry , Glutamate-Ammonia Ligase/chemistry , Binding Sites , Escherichia coli/enzymology , Glutamate-Ammonia Ligase/metabolism , Models, Molecular
15.
Front Genet ; 12: 666136, 2021.
Article in English | MEDLINE | ID: mdl-34178031

ABSTRACT

Preimplantation embryonic lethality is a rare cause of primary female infertility. It has been reported that variants in the transducin-like enhancer of split 6 (TLE6) gene can lead to preimplantation embryonic lethality. However, the incidence of TLE6 variants in patients with preimplantation embryonic lethality is not fully understood. In this study, we identified four patients carrying novel biallelic TLE6 variants in a cohort of 28 patients with preimplantation embryonic lethality by whole-exome sequencing and bioinformatics analysis, accounting for 14.29% (4/28) of the cohort. Immunofluorescence showed that the TLE6 levels in oocytes from patients were much lower than in normal control oocytes, suggesting that the variants result in the lower expression of the TLE6 protein in oocytes. In addition, a retrospective analysis showed that the four patients underwent a total of nine failures of in vitro fertilization and intracytoplasmic sperm injection attempts, and one of them became pregnant on the first attempt using donated oocytes. Our study extends the genetic spectrum of female infertility caused by variants in TLE6 and further confirms previously reported findings that TLE6 plays an essential role in early embryonic development. In such case, oocyte donation may be the preferred treatment.

16.
Biomed Pharmacother ; 138: 111403, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33714782

ABSTRACT

Gu-Ben-Fang-Xiao decoction (GBFXD), derived from the traditional Chinese medicine Yu-Ping-Feng-San, is widely used in clinical settings and has obvious curative effects in respiratory diseases. GBFXD regulates cholesterol transport and lipid metabolism in chronic persistent asthma. There is evidence for its beneficial effects in the remission stage of asthma; however, its metabolic regulatory effects and underlying mechanisms during asthma remission are unclear. In the present study, we used liquid chromatography-mass spectrometry (LC-MS) to analyse the metabolic profile of mouse serum during asthma remission. The acquired LC-MS data were subjected to a multivariate analysis for identification of significantly altered metabolites. In total, 42 metabolites were significantly differentially expressed among the control, model, and GBFXD groups. In particular, levels of fatty acids, acylcarnitines, phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, triglycerides, and diacylglycerols were altered during asthma remission. GBFXD may maintain lipid homeostasis on the lung surface by modulating lipid metabolism and may thereby alleviate asthma. We further quantified hypogeic acid (FA 16:1) based on targeted metabolomics and found that GBFXD may regulate fatty acid metabolism by activating the AMP-activated protein kinase (AMPK) pathway. These results support the use of GBFXD in patients with asthma remission.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Asthma/drug therapy , Asthma/metabolism , Drugs, Chinese Herbal/therapeutic use , Enzyme Activators/therapeutic use , Lipid Metabolism/drug effects , Animals , Drugs, Chinese Herbal/pharmacology , Enzyme Activators/pharmacology , Female , Lipid Metabolism/physiology , Metabolomics/methods , Mice , Remission Induction/methods , Signal Transduction/drug effects , Signal Transduction/physiology
17.
Front Chem ; 9: 649000, 2021.
Article in English | MEDLINE | ID: mdl-33681151

ABSTRACT

Cytochrome P450 enzyme CYP109B1 is a versatile biocatalyst exhibiting hydroxylation activities toward various substrates. However, the regio- and stereoselective steroid hydroxylation by CYP109B1 is far less explored. In this study, the oxidizing activity of CYP109B1 is reconstituted by coupling redox pairs from different sources, or by fusing it to the reductase domain of two self-sufficient P450 enzymes P450RhF and P450BM3 to generate the fused enzyme. The recombinant Escherichia coli expressing necessary proteins are individually constructed and compared in steroid hydroxylation. The ferredoxin reductase (Fdr_0978) and ferredoxin (Fdx_1499) from Synechococcus elongates is found to be the best redox pair for CYP109B1, which gives above 99% conversion with 73% 15ß selectivity for testosterone. By contrast, the rest ones and the fused enzymes show much less or negligible activity. With the aid of redox pair of Fdr_0978/Fdx_1499, CYP109B1 is used for hydroxylating different steroids. The results show that CYP109B1 displayed good to excellent activity and selectivity toward four testosterone derivatives, giving all 15ß-hydroxylated steroids as main products except for 9 (10)-dehydronandrolone, for which the selectivity is shifted to 16ß. While for substrates bearing bulky substitutions at C17 position, the activity is essentially lost. Finally, the origin of activity and selectivity for CYP109B1 catalyzed steroid hydroxylation is revealed by computational analysis, thus providing theoretical basis for directed evolution to further improve its catalytic properties.

18.
Biomed Pharmacother ; 132: 110801, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33049582

ABSTRACT

Allergic airway inflammation is one of the major pathological events involved in the development of asthma. The B cell-activating factor (BAFF)-mediated abnormal activation of B cells plays a key role in developing allergic airway inflammation. Here, we investigated the effects of Gu-Ben-Fang-Xiao decoction (GBFXD), a TCM decoction used in the prevention and treatment of allergic asthma, on allergic airway inflammation and BAFF-mediated B cell activation. A mouse model of OVA-Severe respiratory syncytial virus (RSV) induced asthma in the remission stage was administrated with GBFXD by gavage for four weeks, after which, the pulmonary function was evaluated. Pathological changes of the lung were observed by hematoxylin and eosin (HE) staining, and serum levels of IgE, BAFF, and inflammatory factors were detected by ELISA. The expression of BAFF, APRIL, and their related receptors in the lung and spleen was detected by Western blotting and RT-qPCR. Flow cytometry detected B cell subsets in the spleen, PBC, and monocyte subsets in bronchoalveolar lavage fluid (BALF). The results showed that GBFXD improved the lung function, alleviated the inflammatory changes of the lung tissue in OVA-RSV sensitized mice, and reduced levels of IL-6, TNF-α, IL1-ß, INOS, IL13 as well as IL-15, IgE, BAFF in the serum of OVA-RAV mice. Additionally, GBFXD significantly reduced the proportion of CD19+CD27+ B cell subpopulation and IgE + B cell subpopulation in the PBC and spleen cells of mice. Furthermore, the expression of BAFF, APRIL, BAFFR, TACI, and AID decreased in the lung and spleen of GBFXD-treated mice, as well as the proportion of CD11b + BAFF + cell subsets in BALF. In conclusion, GBFXD has an inhibitory effect on the secretion of BAFF by pulmonary macrophages and the expression of BAFF-related receptors, thereby reducing B cell activation and the release of IgE. This proposed mechanism contributes to the improvement of allergic airway inflammation and respiratory function in an asthmatic mouse model.


Subject(s)
Asthma/drug therapy , B-Cell Activating Factor/metabolism , Drugs, Chinese Herbal/pharmacology , Inflammation/drug therapy , Animals , Asthma/immunology , B-Lymphocytes/immunology , Bronchoalveolar Lavage Fluid/cytology , Disease Models, Animal , Female , Inflammation/immunology , Lung/drug effects , Lung/immunology , Lung/pathology , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Respiratory Syncytial Viruses/immunology
19.
Stem Cells Int ; 2020: 6091269, 2020.
Article in English | MEDLINE | ID: mdl-32399046

ABSTRACT

The human endometrial stromal cells (hEndoSCs) could maintain endometrial homeostasis and play a critical role in repairing endometrial injury. Mesenchymal stem cells (MSCs) significantly increase the proliferation of damaged hEndoSCs and protect them from apoptosis. Recent studies indicated that exosomes derived from stem cells could be recruited to damaged tissues for regeneration, which exhibit the potential for stem cell therapy as therapeutic vectors. In this study, we isolated human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exos) and investigated the effects of hUCMSC-Exos on mifepristone-induced hEndoSC injury. Exosome uptake and cell proliferation as well as cell apoptosis of damaged hEndoSCs treated with hUCMSC-Exos were detected. We also assessed the expression of apoptosis-related proteins and the PTEN/AKT signaling pathway. We found hUCMSC-Exos improved the proliferation of damaged hEndoSCs and protected hEndoSCs from the mifepristone-induced apoptosis. hUCMSC-Exos upregulated Bcl-2 level as well as downregulated Cleaved Caspase-3 level and activated the PTEN/AKT signaling pathway to regulate the proliferation and antiapoptosis. These results indicated hUCMSC-Exos protected hEndoSCs from mifepristone-induced apoptosis and played an active role in repairing the damaged hEndoSCs through the PTEN/AKT signaling pathway in vitro. hUCMSC-Exos may hold great promise in the cell-free therapy of endometrial injury.

20.
J Ovarian Res ; 13(1): 42, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32316999

ABSTRACT

PURPOSE: Variations in many genes may lead to the occurrence of oocyte maturation defects. To investigate the genetic basis of oocyte maturation defects, we performed clinical and genetic analysis of a pedigree. METHODS: The proband with oocyte maturation defect-2 receiving ovulation induction therapy and her parents were selected for clinical detection, whole exome sequencing and Sanger sequencing. One unrelated healthy woman received ovulation induction therapy as control. Mutations were assessed after frequency screening of public exome databases. Then homozygous variants shared by the proband and her parents were selected. RESULTS: Arrest of oocytes maturation was observed. A new missense mutation in TUBB8 (TUBB8: NM_177,987: exon 2: c. C161T: p. A54V) was identified, which was shown to be rare compared with public databases. The variant was highly conserved among primates, and was suggested to be deleterious by online software prediction. CONCLUSIONS: The homozygote of this variant (TUBB8: NM_ 177,987: exon 2:c.C161T: p.A54V) might affect spindle assembly, cause arrest of oocyte maturation and lead to oocyte maturation defect-2.


Subject(s)
Asian People/genetics , Infertility, Female/genetics , Oocytes/physiology , Tubulin/genetics , Adult , Consanguinity , Female , Homozygote , Humans , Infertility, Female/therapy , Mutation, Missense , Ovulation Induction
SELECTION OF CITATIONS
SEARCH DETAIL
...