Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cell Res ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103523

ABSTRACT

While lysine methylation is well-known for regulating gene expression transcriptionally, its implications in translation have been largely uncharted. Trimethylation at lysine 22 (K22me3) on RPL40, a core ribosomal protein located in the GTPase activation center, was first reported 27 years ago. Yet, its methyltransferase and role in translation remain unexplored. Here, we report that SMYD5 has robust in vitro activity toward RPL40 K22 and primarily catalyzes RPL40 K22me3 in cells. The loss of SMYD5 and RPL40 K22me3 leads to reduced translation output and disturbed elongation as evidenced by increased ribosome collisions. SMYD5 and RPL40 K22me3 are upregulated in hepatocellular carcinoma (HCC) and negatively correlated with patient prognosis. Depleting SMYD5 renders HCC cells hypersensitive to mTOR inhibition in both 2D and 3D cultures. Additionally, the loss of SMYD5 markedly inhibits HCC development and growth in both genetically engineered mouse and patient-derived xenograft (PDX) models, with the inhibitory effect in the PDX model further enhanced by concurrent mTOR suppression. Our findings reveal a novel role of the SMYD5 and RPL40 K22me3 axis in translation elongation and highlight the therapeutic potential of targeting SMYD5 in HCC, particularly with concurrent mTOR inhibition. This work also conceptually broadens the understanding of lysine methylation, extending its significance from transcriptional regulation to translational control.

2.
J Cardiovasc Transl Res ; 16(5): 1232-1248, 2023 10.
Article in English | MEDLINE | ID: mdl-37155136

ABSTRACT

Tamoxifen, a selective estrogen receptor modulator, was initially used to treat cancer in women and more recently to induce conditional gene editing in rodent hearts. However, little is known about the baseline biological effects of tamoxifen on the myocardium. In order to clarify the short-term effects of tamoxifen on cardiac electrophysiology of myocardium, we applied a single-chest-lead quantitative method and analyzed the short-term electrocardiographic phenotypes induced by tamoxifen in the heart of adult female mice. We found that tamoxifen prolonged the PP interval and caused a decreased heartbeat, and further induced atrioventricular block by gradually prolonging the PR interval. Further correlation analysis suggested that tamoxifen had a synergistic and dose-independent inhibition on the time course of the PP interval and PR interval. This prolongation of the critical time course may represent a tamoxifen-specific ECG excitatory-inhibitory mechanism, leading to a reduction in the number of supraventricular action potentials and thus bradycardia. Segmental reconstructions showed that tamoxifen induced a decrease in the conduction velocity of action potentials throughout the atria and parts of the ventricles, resulting in a flattening of the P wave and R wave. In addition, we detected the previously reported prolongation of the QT interval, which may be due to a prolonged duration of the ventricular repolarizing T wave rather than the depolarizing QRS complex. Our study highlights that tamoxifen can produce patterning alternations in the cardiac conduction system, including the formation of inhibitory electrical signals with reduced conduction velocity, implying its involvement in the regulation of myocardial ion transport and the mediation of arrhythmias. A Novel Quantitative Electrocardiography Strategy Reveals the Electroinhibitory Effect of Tamoxifen on the Mouse Heart(Figure 9). A working model of tamoxifen producing acute electrical disturbances in the myocardium. SN, sinus node; AVN, atrioventricular node; RA, right atrium; LA, left atrium; RV, right ventricle; LV, left ventricle.


Subject(s)
Electrocardiography , Tamoxifen , Humans , Adult , Female , Animals , Mice , Tamoxifen/toxicity , Arrhythmias, Cardiac , Heart Conduction System , Heart Ventricles , Atrioventricular Node
3.
Dev Cell ; 57(22): 2533-2549.e7, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36413948

ABSTRACT

Heart development is controlled by a complex transcriptional network composed of transcription factors and epigenetic regulators. Mutations in key developmental transcription factor MESP1 and chromatin factors, such as PRC1 and cohesin components, have been found in human congenital heart diseases (CHDs), although their functional mechanism during heart development remains elusive. Here, we find that MESP1 interacts with RING1A/RING1, the core component of PRC1. RING1A depletion impairs human cardiomyocyte differentiation, and cardiac abnormalities similar to those in patients with MESP1 mutations were observed in Ring1A knockout mice. Mechanistically, MESP1 associates with RING1A to activate cardiogenic genes through promoter-enhancer interactions regulated by cohesin and CTCF and histone acetylation mediated by p300. Importantly, CHD mutations of MESP1 significantly affect such mechanisms and impair target gene activation. Together, our results demonstrate the importance of MESP1-RING1A complex in heart development and provide insights into the pathogenic mechanisms of CHDs caused by mutations in MESP1, PRC1, and cohesin components.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Heart Defects, Congenital , Mice , Animals , Humans , Basic Helix-Loop-Helix Transcription Factors/metabolism , Organogenesis , Cell Differentiation , Gene Expression Regulation , Gene Regulatory Networks , Heart Defects, Congenital/genetics , Mice, Knockout
4.
J Virol ; 96(16): e0048022, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35924918

ABSTRACT

The continuous emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses new challenges in the fight against the coronavirus disease 2019 (COVID-19) pandemic. The newly emerging Omicron strain caused serious immune escape and raised unprecedented concern all over the world. The development of an antibody targeting a conserved and universal epitope is urgently needed. A subset of neutralizing antibodies (NAbs) against COVID-19 from convalescent patients were isolated in our previous study. In this study, we investigated the accommodation of these NAbs to SARS-CoV-2 variants of concern (VOCs), revealing that IgG 553-49 neutralizes pseudovirus of the SARS-CoV-2 Omicron variant. In addition, we determined the cryo-electron microscopy (cryo-EM) structure of the SARS-CoV-2 spike (S) protein complexed with three monoclonal antibodies targeting different epitopes, including 553-49, 553-15, and 553-60. Notably, 553-49 targets a novel conserved epitope and neutralizes the virus by disassembling S trimers. IgG 553-15, an antibody that neutralizes all of the VOCs except Omicron, cross-links two S trimers to form a trimer dimer, demonstrating that 553-15 neutralizes the virus by steric hindrance and virion aggregation. These findings suggest the potential to develop 553-49 and other antibodies targeting this highly conserved epitope as promising therapeutic reagents for COVID-19. IMPORTANCE The emergence of the Omicron strain of SARS-CoV-2 caused higher immune escape, raising unprecedented concerns about the effectiveness of antibody therapies and vaccines. In this study, we identified a SARS-CoV-2 neutralizing antibody, 553-49, which neutralizes all variants by targeting a completely conserved novel epitope. In addition, we revealed that IgG 553-15 neutralizes SARS-CoV-2 by cross-linking virions and that 553-60 functions by blocking receptor binding. Comparison of different receptor binding domain (RBD) epitopes revealed that the 553-49 epitope is hidden in the S trimer and keeps a high degree of conservation during SARS-CoV-2 evolution, making 553-49 a promising therapeutic reagent against the emerging Omicron and future variants of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Epitopes , Humans , Immunoglobulin G , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
Genes (Basel) ; 13(6)2022 06 15.
Article in English | MEDLINE | ID: mdl-35741828

ABSTRACT

The cell division of the alfalfa symbiont, Sinorhizobium meliloti, is dictated by a cell cycle regulatory pathway containing the key transcription factors CtrA, GcrA, and DnaA. In this study, we found that NtrX, one of the regulators of nitrogen metabolism, can directly regulate the expression of ctrA, gcrA, and dnaA from the cell cycle pathway. Three sets of S. meliloti ntrX mutants showed similar cell division defects, such as slow growth, abnormal morphology of some cells, and delayed DNA synthesis. Transcription of ctrA and gcrA was upregulated, whereas the transcription of dnaA and ftsZ1 was downregulated in the insertion mutant and the strain of Sm1021 expressing ntrXD53E. Correspondingly, the inducible transcription of ntrX activates the expression of dnaA and ftsZ1, but represses ctrA and gcrA in the depletion strain. The expression levels of CtrA and GcrA were confirmed by Western blotting. The transcription regulation of these genes requires phosphorylation of the conserved 53rd aspartate in the NtrX protein that binds directly to the promoter regions of ctrA, gcrA, dnaA, and ftsZ1 by recognizing the characteristic sequence CAAN2-5TTG. Our findings suggest that NtrX affects S. meliloti cell division by regulating the transcription of the key cell cycle regulatory genes.


Subject(s)
Sinorhizobium meliloti , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Cycle/genetics , Cell Division/genetics , Gene Expression Regulation, Bacterial , Genes, Regulator , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism
6.
Blood Adv ; 5(17): 3241-3253, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34448811

ABSTRACT

Epigenetic abnormalities are frequently involved in the initiation and progression of cancers, including acute myeloid leukemia (AML). A subtype of AML, acute promyelocytic leukemia (APL), is mainly driven by a specific oncogenic fusion event of promyelocytic leukemia-RA receptor fusion oncoprotein (PML-RARα). PML-RARα was reported as a transcription repressor through the interaction with nuclear receptor corepressor and histone deacetylase complexes leading to the mis-suppression of its target genes and differentiation blockage. Although previous studies were mainly focused on the connection of histone acetylation, it is still largely unknown whether alternative epigenetics mechanisms are involved in APL progression. KDM5A is a demethylase of histone H3 lysine 4 di- and tri-methylations (H3K4me2/3) and a transcription corepressor. Here, we found that the loss of KDM5A led to APL NB4 cell differentiation and retarded growth. Mechanistically, through epigenomics and transcriptomics analyses, KDM5A binding was detected in 1889 genes, with the majority of the binding events at promoter regions. KDM5A suppressed the expression of 621 genes, including 42 PML-RARα target genes, primarily by controlling the H3K4me2 in the promoters and 5' end intragenic regions. In addition, a recently reported pan-KDM5 inhibitor, CPI-455, on its own could phenocopy the differentiation effects as KDM5A loss in NB4 cells. CPI-455 treatment or KDM5A knockout could greatly sensitize NB4 cells to all-trans retinoic acid-induced differentiation. Our findings indicate that KDM5A contributed to the differentiation blockage in the APL cell line NB4, and inhibition of KDM5A could greatly potentiate NB4 differentiation.


Subject(s)
Leukemia, Promyelocytic, Acute , Cell Differentiation , Gene Expression , Humans , Leukemia, Promyelocytic, Acute/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Retinoblastoma-Binding Protein 2
8.
Cell Rep ; 33(12): 108544, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33357433

ABSTRACT

N6 methylation at adenosine 1832 (m6A1832) of mammalian 18S rRNA, occupying a critical position within the decoding center, is modified by a conserved methyltransferase, METTL5. Here, we find that METTL5 shows strong substrate preference toward the 18S A1832 motif but not the other reported m6A motifs. Comparison with a yeast ribosome structural model unmodified at this site indicates that the modification may facilitate mRNA binding by inducing conformation changes in the mammalian ribosomal decoding center. METTL5 promotes p70-S6K activation and proper translation initiation, and the loss of METTL5 significantly reduces the abundance of polysome. METTL5 expression is elevated in breast cancer patient samples and is required for growth of several breast cancer cell lines. We further find that Caenorhabditis elegans lacking the homolog metl-5 develop phenotypes known to be associated with impaired translation. Altogether, our findings uncover critical and conserved roles of METTL5 in the regulation of translation.


Subject(s)
Breast Neoplasms/enzymology , Methyltransferases/metabolism , RNA, Ribosomal, 18S/metabolism , Adenosine/metabolism , Animals , Breast Neoplasms/pathology , Caenorhabditis elegans , Cell Growth Processes/physiology , Cell Line, Tumor , Female , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Methylation
9.
Cell Rep ; 32(3): 107918, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32668215

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a worldwide threat to humans, and neutralizing antibodies have therapeutic potential. We have purified more than 1,000 memory B cells specific to SARS-CoV-2 S1 or its RBD (receptor binding domain) and obtain 729 paired heavy- and light-chain fragments. Among these, 178 antibodies test positive for antigen binding, and the majority of the top 17 binders with EC50 below 1 nM are RBD binders. Furthermore, we identify 11 neutralizing antibodies, eight of which show IC50 within 10 nM, and the best one, 414-1, with IC50 of 1.75 nM. Through epitope mapping, we find three main epitopes in RBD recognized by these antibodies, and epitope-B antibody 553-15 could substantially enhance the neutralizing abilities of most of the other antibodies. We also find that 515-5 could cross neutralize the SARS-CoV pseudovirus. Altogether, our study provides 11 potent human neutralizing antibodies for COVID-19 as therapeutic candidates.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Receptors, Virus/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/therapeutic use , B-Lymphocytes/immunology , COVID-19 , Coronavirus Infections/therapy , Epitope Mapping , Epitopes/immunology , Humans , Immunologic Memory/immunology , Neutralization Tests , Pandemics , Pneumonia, Viral/therapy , Protein Domains/immunology , SARS-CoV-2
11.
FASEB J ; 33(11): 13040-13050, 2019 11.
Article in English | MEDLINE | ID: mdl-31487196

ABSTRACT

Embryonic stem cells (ESCs) are pluripotent stem cells with the ability to self-renew and to differentiate into any cell types of the 3 germ layers. Recent studies have demonstrated that there is a strong connection between mitochondrial function and pluripotency. Here, we report that methyltransferase like (Mettl) 17, identified from the clustered regularly interspaced short palindromic repeats knockout screen, is required for proper differentiation of mouse embryonic stem cells (mESCs). Mettl17 is located in mitochondria through its N-terminal targeting sequence and specifically interacts with 12S mitochondrial ribosomal RNA (mt-rRNA) as well as small subunits of mitochondrial ribosome (MSSUs). Loss of Mettl17 affects the stability of both 12S mt-rRNA and its associated proteins of MSSUs. We further showed that Mettl17 is an S-adenosyl methionine (SAM)-binding protein and regulates mitochondrial ribosome function in a SAM-binding-dependent manner. Loss of Mettl17 leads to around 70% reduction of m4C840 and 50% reduction of m5C842 of 12S mt-rRNA, revealing the first regulator of the m4C840 and indicating a crosstalk between the 2 nearby modifications. The defects of mitochondrial ribosome caused by deletion of Mettl17 lead to the impaired translation of mitochondrial protein-coding genes, resulting in significant changes in mitochondrial oxidative phosphorylation and cellular metabolome, which are important for mESC pluripotency.-Shi, Z., Xu, S., Xing, S., Yao, K., Zhang, L., Xue, L., Zhou, P., Wang, M., Yan, G., Yang, P., Liu, J., Hu, Z., Lan, F. Mettl17, a regulator of mitochondrial ribosomal RNA modifications, is required for the translation of mitochondrial coding genes.


Subject(s)
Genes, Mitochondrial , Methyltransferases/physiology , Protein Biosynthesis/physiology , RNA, Ribosomal/genetics , Animals , Cells, Cultured , Embryonic Stem Cells/metabolism , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Mice, Knockout , Protein Binding , S-Adenosylmethionine/metabolism
12.
Mol Plant Microbe Interact ; 31(9): 951-961, 2018 09.
Article in English | MEDLINE | ID: mdl-29547354

ABSTRACT

Agrobacterium tumefaciens infects and causes crown galls in dicot plants by transferring T-DNA from the Ti plasmid to the host plant via a type IV secretion system. This process requires appropriate environmental conditions, certain plant secretions, and bacterial regulators. In our previous work, a member of the LysR family of transcriptional regulators (LsrB) in Sinorhizobium meliloti was found to modulate its symbiotic interactions with the host plant alfalfa. However, the function of its homolog in A. tumefaciens remains unclear. In this study, we show that the LsrB protein of A. tumefaciens is required for efficient transformation of host plants. A lsrB deletion mutant of A. tumefaciens exhibits a number of defects, including in succinoglycan production, attachment, and resistance to oxidative stress and iron limitation. RNA-sequencing analysis indicated that 465 genes were significantly differentially expressed (upregulation of 162 genes and downregulation of 303 genes) in the mutant, compared with the wild-type strain, including those involved in succinoglycan production, iron transporter, and detoxification enzymes for oxidative stress. Moreover, expression of the lsrB gene from S. meliloti, Brucella abortus, or A. tumefaciens rescued the defects observed in the S. meliloti or A. tumefaciens lsrB deletion mutant. Our findings suggest that a conserved mechanism of LsrB function exists in symbiotic and pathogenic bacteria of the family Rhizobiaceae.


Subject(s)
Agrobacterium tumefaciens/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Medicago sativa/microbiology , Plant Tumors/microbiology , Sinorhizobium meliloti/genetics , Agrobacterium tumefaciens/physiology , Arabidopsis/genetics , Arabidopsis/microbiology , Bacterial Proteins/genetics , Gene Expression , Genes, Reporter , Iron/metabolism , Oxidative Stress , Polysaccharides, Bacterial/metabolism , Sequence Deletion , Symbiosis , Nicotiana/genetics , Nicotiana/microbiology
13.
Environ Microbiol ; 19(12): 5130-5145, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29124841

ABSTRACT

The development of legume nitrogen-fixing nodules is regulated by reactive oxygen species (ROS) produced by symbionts. Several regulators from Rhizobium are involved in ROS sensing. In a previous study, we found that Sinorhizobium meliloti LsrB regulates lipopolysaccharide production and is associated with H2 O2 accumulation in alfalfa (Medicago sativa) nodules. However, its underlying regulatory mechanism remains unclear. Here, we report that the cysteine residues in LsrB are required for adaptation to oxidative stress, gene expression, alfalfa nodulation and nitrogen fixation. Moreover, LsrB directly activated the transcription of lrp3 and gshA (encoding γ-glutamylcysteine synthetase, responsible for glutathione synthesis) and this regulation required the cysteine (Cys) residues in the LsrB substrate-binding domain. The Cys residues could sense oxidative stress via the formation of intermolecular disulfide bonds, generating LsrB dimers and LsrB-DNA complexes. Among the Cys residues, C238 is a positive regulatory site for the induction of downstream genes, whereas C146 and C275 play negative roles in the process. The lsrB mutants with Cys-to-Ser substitutions displayed altered phenotypes in respect to their adaptation to oxidative stress, nodulation and nitrogen fixation-related plant growth. Our findings demonstrate that S. meliloti LsrB modulates alfalfa nodule development by directly regulating downstream gene expression via a post-translational strategy.


Subject(s)
Cysteine/metabolism , Medicago sativa/metabolism , Oxidative Stress/physiology , Root Nodules, Plant/metabolism , Sinorhizobium meliloti/genetics , Amino Acid Sequence/genetics , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Dipeptides , Gene Expression Regulation, Plant/genetics , Glutathione Disulfide/metabolism , Hydrogen Peroxide/metabolism , Nitrogen/metabolism , Nitrogen Fixation/genetics , Nitrogen Fixation/physiology , Root Nodules, Plant/microbiology , Sinorhizobium meliloti/metabolism , Symbiosis/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL