Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
J Nanosci Nanotechnol ; 21(12): 6196-6204, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34229821

ABSTRACT

This study aimed to investigate the effects of DMSO@γ-Fe2O3 nanomagnetic fluid thermotherapy combined with the chemotherapy drug carmustine on cervical cancer cells under a certain intensity of alternating magnetic field. And the role of Mir-590-3P in the development and progression of cervical cancer. The optimal thermotherapy concentration of γ-Fe2O3 nanomaterials on cervical cancer cells was determined by in vitro heating. In addition, the MTT colorimetric method was used to evaluate the toxic effect of γ-Fe2O3 magnetic nanoparticles on cervical cancer cells, and the optimal therapeutic concentration of carbachol on cervical cancer cells was optimized (0.015 g · L-1). The cervical cancer cells were divided into control, γ-Fe2O3 hyperthermia, chemotherapy, and DMSO@γ-Fe2O3 combined chemotherapy groups. After 2 h exposure to hypothermic conditions, flow cytometry was used to assess cell apoptosis for each group. The heating effect of the γ-Fe2O3 magnetic nanomaterials was apparent. When the concentration of γ-Fe2O3 was ≥6 g· L-1, the temperature rise above 41 °C. γ-Fe2O3 is non-toxic to cervical cancer cells and has good biocompatibility. Taking the drug concentration of IC25 as the working concentration of this study, the working concentration of carmustine was 0.015 g · L-1. Both the 41 °C heat treatment and chemotherapy alone had a killing effect on glioma and cervical cancer cells (P < 0.05). Additionally, the combined inhibitory effect of DMSO@γ-Fe2O3 nanomagnetic fluid thermotherapy and drugs at this temperature was significantly stronger than that of thermotherapy and chemotherapy alone (P < 0.05). For the control, gamma-Fe2O3 hyperthermia, chemotherapy, and DMSO@γ-Fe2O3 combined chemotherapy groups, the apoptosis rates of the cervical cancer cells were 1.4%, 18.6%, 24.12%, and 38.97%, respectively. DMSO@γ-Fe2O3 nanomagnetic fluid thermotherapy combined with the chemotherapeutic drug carmustine exerted a noticeable toxic effect on the cervical cancer cells, and DMSO@γ-Fe2O3 significantly enhanced the killing effect of carmustine on cervical cancer cells.


Subject(s)
Hyperthermia, Induced , MicroRNAs , Uterine Cervical Neoplasms , Carmustine/pharmacology , Dimethyl Sulfoxide/pharmacology , Female , Ferric Compounds , Humans , Magnetic Iron Oxide Nanoparticles
SELECTION OF CITATIONS
SEARCH DETAIL