Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(19): 8899-8907, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38695311

ABSTRACT

Given the escalating significance of near-infrared (NIR) spectroscopy across industries, agriculture, and various domains, there is an imminent need to address the development of a novel generation of intelligent NIR light sources. Here, a series of Cr3+-doped BaLaMgNbO6 (BLMN) ultrabroadband NIR phosphor with a coverage range of 650-1300 nm were developed. The emission peak locates at 830 nm with a full width at half maximum of 210 nm. This ultrabroadband emission originates from the 4T2→4A2 transition of Cr3+ and the simultaneous occupation of [MgO6] and [NbO6] octahedral sites confirmed by low photoluminescence spectra (77-250 K), time-resolved photoluminescence spectra, and electron paramagnetic resonance spectra. The fluxing strategy improves the luminescence intensity and thermal stability of BLMN:0.02Cr3+ phosphors. The internal quantum efficiency (IQE) is 51%, external quantum efficiency (EQE) can reach 33%, and thermal stability can be maintained at 60%@100 °C. Finally, we successfully demonstrated the application of BLMN:Cr3+ ultrabroadband in the qualitative analysis of organic matter and food freshness detection.

2.
Inorg Chem ; 63(8): 3901-3912, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38361452

ABSTRACT

It is significant and valuable to investigate novel and high-performance red-emitting phosphors for high-quality wLED applications. Based on this consideration, we developed a novel Mn2+-doped red Ca18K3Sc(PO4)14:Mn2+ (CKSP:Mn2+) phosphor. The emission peak of CKSP:Mn2+ is located at 640 nm, presenting a broadband red emission with a fwhm of 79 nm under 405 nm excitation. The CKSP:1.0Mn2+ phosphor shows superior thermal stability. At 150 °C, the integrated PL intensity and peak intensity of the CKSP:1.0Mn2+ phosphor maintain 93.2 and 85.7% of those at 25 °C, respectively. Through the strategy of energy transfer among Ce3+-Eu2+-Mn2+, the PL intensity of Mn2+ has increased by nearly 118 times, and the quantum yield has improved from 6 up to 72%. The structure-related photoluminescence and energy transfer mechanisms are discussed in detail. The as-fabricated wLED pumped by a 370 nm LED chip combining commercial the green (Sr,Ba)2SiO4:Eu2+ phosphor, blue BaMgAl10O17:Eu2+ phosphor, and the as-synthesized CKSP:1.0Mn2+, 0.02Eu2+, 0.40Ce3+ phosphor shows excellent color quality (CCT = 5555 K, Ra = 87), which indicates that the CKSP:1.0Mn2+, 0.02Eu2+, 0.40Ce3+ phosphor has extraordinary broad prospects in future wLED applications.

3.
Inorg Chem ; 63(9): 4438-4446, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38377556

ABSTRACT

Doping lanthanide ions is an efficient method to modify the optical properties of lead-free double-perovskite halides. However, most lanthanide-doped double perovskites show a low luminescence efficiency and require a high excitation energy. Here, we have successfully prepared a series of Ho3+-doped Cs2NaBiCl6 microcrystals through a simple hydrothermal method and obtained strong characteristic emissions of Ho3+ at 492 and 657 nm under low-energy excitation (449 nm). After codoping Mn2+, apart from the characteristic emissions from Ho3+ under 450 nm wavelength excitation, the orangish-red luminescence consisting of the emission band centered at 591 nm from Mn2+ and a sharp emission peak at 657 nm from Ho3+ is obtained under 355 nm UV light excitation. Photoluminescence (PL) emission and excitation spectra, along with the PL decay curves, confirm the existence of an energy-transfer channel from Cs2NaBiCl6 to Mn2+ and then from Mn2+ to Ho3+. The enhanced absorption efficiency (10.5 → 70.7%) suggests that the codoping of Mn2+ overcomes the low absorption efficiency caused by f-f forbidden transitions of Ho3+. Finally, the diverse luminescent performance within the Cs2NaBiCl6:Ho3+, Mn2+ phosphor is realized by altering the excitation wavelength, thereby enabling its application in warm-white-light-emitting diodes and plant growth in this work.

SELECTION OF CITATIONS
SEARCH DETAIL
...