Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 476: 135050, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38954852

ABSTRACT

Spent lithium-ion batteries (LIBs) have emerged as a major source of waste due to their low recovery rate. The physical disposal of spent LIBs can lead to the leaching of their contents into the surrounding environment. While it is widely agreed that hazardous substances such as nickel and cobalt in the leachate can pose a threat to the environment and human health, the overall composition and toxicity of LIB leachate remain unclear. In this study, a chemical analysis of leachate from spent LIBs was conducted to identify its primary constituents. The ecotoxicological parameters of the model organism, rotifer Brachionus asplanchnoidis, were assessed to elucidate the toxicity of the LIB leachate. Subsequent experiments elucidated the impacts of the LIB leachate and its representative components on the malondialdehyde (MDA) level, antioxidant capacity, and enzyme activity of B. asplanchnoidis. The results indicate that both the LIB leachate and its components are harmful to individual rotifers due to the adverse effects of stress-induced disturbances in biochemical indicators, posing a threat to population development. The intensified poisoning phenomenon under combined stress suggests the presence of complex synergistic effects among the components of LIB leachate. Due to the likely environmental and biological hazards, LIBs should be strictly managed after disposal. Additionally, more economical and eco-friendly recycling and treatment technologies need to be developed and commercialized.

2.
Mar Pollut Bull ; 200: 116077, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38330811

ABSTRACT

Nitrite and microplastics (MPs) are environmental pollutants that threaten intestinal integrity and affect immune function of shrimp. In this study, the shrimp Litopenaeus vannamei were exposed to the individual and combined stress of nitrite and microplastics for 14 days, and the changes of intestinal histology and physiological functions were investigated. After single and combined stress, affectations occurred in intestinal tissue; the antioxidant enzyme activities (MDA, H2O2, CAT increased) and gene expression levels (CAT, SOD, GPx, HSP70 up-regulated) changed. The expression levels of detoxification genes (CYP450, UGT down-regulated, GST up-regulated), apoptosis genes (CASP-3 up-regulated) and endoplasmic reticulum stress genes (Bip, GRP94 down-regulated) changed. Furthermore, the stress also increased intestinal microbial diversity, causing bacterial composition variation, especially beneficial bacteria and pathogenic bacteria. These results suggested that nitrite and microplastics stress had adverse effects on the intestinal health of L. vannamei by affecting intestinal tissue morphology, immune response and microbial community.


Subject(s)
Microbiota , Penaeidae , Animals , Nitrites , Microplastics , Plastics/pharmacology , Hydrogen Peroxide , Antioxidants/metabolism , Bacteria/metabolism , Digestion
SELECTION OF CITATIONS
SEARCH DETAIL