Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Zool Res ; 43(3): 391-403, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35362676

ABSTRACT

In an attempt to generate g.A746G substitution in the BMPR-IB gene, we unexpectedly obtained BMPR-IB homozygous knockout piglets ( BMPR-IB -/-) and heterogeneous knockout piglets with one copy of the A746G mutation ( BMPR-IB -/746G) via CRISPR/Cas9 editing. Polymerase chain reaction (PCR) and sequencing revealed complex genomic rearrangements in the target region. All BMPR-IB-disrupted piglets showed an inability to stand and walk normally. Both BMPR-IB -/- and BMPR-IB -/746G piglets exhibited severe skeletal dysplasia characterized by distorted and truncated forearms (ulna, radius) and disordered carpal, metacarpal, and phalangeal bones in the forelimbs. The piglets displayed more severe deformities in the hindlimbs by visual inspection, including fibular hemimelia, enlarged tarsal bone, and disordered toe joint bones. Limb deformities were more profound in BMPR-IB -/- piglets than in the BMPR-IB -/746G piglets. Proteomic analysis identified 139 differentially expressed proteins (DEPs) in the hindlimb fibula of BMPR -IB -/746G piglets compared to the wild-type (WT) controls. Most DEPs are involved in skeletal or embryonic development and/or the TGF-ß pathway and tumor progression. Gene Ontology (GO) and protein domain enrichment analysis suggested alterations in these processes. Of the top 50 DEPs, a large proportion, e.g., C1QA, MYO1H, SRSF1, P3H1, GJA1, TCOF1, RBM10, SPP2, MMP13, and PHAX, were significantly associated with skeletal development. Our study provides novel findings on the role of BMPR-IB in mammalian limb development.


Subject(s)
Genomics , Proteomics , Animals , Extremities , Female , Mammals , Pregnancy , Swine/genetics
2.
Yi Chuan ; 38(3): 217-26, 2016 03.
Article in Chinese | MEDLINE | ID: mdl-27001476

ABSTRACT

CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) is an acquired immune system found in bacteria and archaea that fight against invasion of viruses or plasmids. CRISPR/Cas systems are currently classified into three main types: I, II and III, of which type II has relatively simple components. The CRISPR/Cas9 technology modified from type II CRISPR/Cas system has been developed as an efficient genome editing tool. Since the initial application of the CRISPR/Cas9 technology in mammals in 2013, the reports of this system for genomic editing has skyrocketed. Farm animals are not only economically important animals, but also ideal animal models for human diseases and biomedical studies. In this review, we summarize the applications of CRISPR/Cas9 in farm animals, briefly describe the off-target effects and the main solutions, and finally highlight the future perspectives of this technology.


Subject(s)
Animals, Domestic/genetics , CRISPR-Cas Systems , Genetic Engineering/methods , Animals , Genetic Engineering/trends , Genome , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...