Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
FASEB J ; 38(9): e23654, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38717442

ABSTRACT

Heart failure and cardiac remodeling are both characterized by mitochondrial dysfunction. Healthy mitochondria are required for adequate contractile activity and appropriate regulation of cell survival. In the mammalian heart, enhancement of the mitochondrial unfolded protein response (UPRmt) is cardioprotective under pressure overload conditions. We explored the UPRmt and the underlying regulatory mechanism in terms of hypertension-induced cardiac remodeling and the cardioprotective effect of metformin. Male spontaneously hypertensive rats and angiotensin II-treated neonatal rat cardiomyocytes were used to induce cardiac hypertrophy. The results showed that hypertension induced the formation of aberrant mitochondria, characterized by a reduced mtDNA/nDNA ratio and swelling, as well as lower levels of mitochondrial complexes I to V and inhibition of the expression of one protein subunit of each of complexes I to IV. Such changes eventually enlarged cardiomyocytes and increased cardiac fibrosis. Metformin treatment increased the mtDNA/nDNA ratio and regulated the UPRmt, as indicated by increased expression of activating transcription factor 5, Lon protease 1, and heat shock protein 60, and decreased expression of C/EBP homologous protein. Thus, metformin improved mitochondrial ultrastructure and function in spontaneously hypertensive rats. In vitro analyses revealed that metformin reduced the high levels of angiotensin II-induced mitochondrial reactive oxygen species in such animals and stimulated nuclear translocation of heat shock factor 1 (HSF1). Moreover, HSF1 small-interfering RNA reduced the metformin-mediated improvements in mitochondrial morphology and the UPRmt by suppressing hypertrophic signals and cardiomyocyte apoptosis. These results suggest that HSF1/UPRmt signaling contributes to the beneficial effects of metformin. Metformin-mediated targeting of mitochondrial protein homeostasis and modulation of HSF1 levels have potential therapeutic implications in terms of cardiac remodeling.


Subject(s)
Heat Shock Transcription Factors , Metformin , Myocytes, Cardiac , Rats, Inbred SHR , Unfolded Protein Response , Animals , Metformin/pharmacology , Unfolded Protein Response/drug effects , Male , Rats , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Hypertension/metabolism , Hypertension/drug therapy , Ventricular Remodeling/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Angiotensin II/pharmacology , Cardiomegaly/metabolism , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Rats, Inbred WKY
2.
Front Neurosci ; 18: 1373375, 2024.
Article in English | MEDLINE | ID: mdl-38660220

ABSTRACT

Objective: To observe the efficacy and safety of pelvic floor magnetic stimulation (PFMS) combined with mirabegron in female patients with refractory overactive bladder (OAB) symptoms. Patients and methods: A total of 160 female patients with refractory OAB symptoms were prospectively randomized into two groups. Eighty cases in the combination group accepted PFMS and mirabegron therapy and 80 cases as control only accepted mirabegron therapy (The clinical trial registry number: ChiCTR2200070171). The lower urinary tract symptoms, OAB questionnaire (OAB-q) health-related quality of life (HRQol), symptom bother score and OABSS between two groups were compared at the 1st, 2nd and 4th week ends. Results: All of 160 patients were randomly assigned to two groups, of which 80 patients were included in the combination group and 80 in the mirabegron group. The incidences of LUTS, including urgency, frequent urination, and incontinence episodes, in the 2nd week and the 4th week after combination treatment were significantly lower than those in the mirabegron group (p < 0.05). The incidence of drug-related adverse events between two groups was similar, and there was no statistically significant difference (p > 0.05). With respect to secondary variables, the OAB-q HRQol score in the combination group was statistically superior in comparison with that in the mirabegron group between the 2nd week and the 4th week (p < 0.05). This was consistent with the primary outcome. Meanwhile, from the second to fourth week, the OAB-q symptom bother score and OABSS in the combination group were both lower than in the mirabegron group (p < 0.05). Conclusion: Combination therapy of PFMS and mirabegron demonstrated significant improvements over mirabegron monotherapy in reducing refractory OAB symptoms for female patients, and providing a higher quality of life without increasing bothersome adverse effects. Clinical Trial Registration: https://www.chictr.org.cn/, ChiCTR-INR-22013524.

3.
Urolithiasis ; 52(1): 31, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38340165

ABSTRACT

To observe the efficacy and safety of retrograde intrarenal surgery (RIRS) combined with flexible vacuum-assisted ureteral access sheath (FV-UAS) and minimally invasive percutaneous nephrolithotomy (MPCNL) in patients with 2-3 cm upper urinary tract stones. A total of 160 patients with 2-3 cm upper urinary tract stones were prospectively randomized into 2 groups-80 in the FV-UAS group and 80 cases as control in the MPCNL group. The stone-free rates (SFRs) at different times (postoperative 1st day and 4th week) were considered as the primary outcome of the study. The secondary end points were operative time, hemoglobin decrease, postoperative hospital stay, and operation-related complications. There was no obvious difference between the two groups in patient's demographics and preoperative clinical characteristics (all P > 0.05). Postoperative data showed that mean decrease in hemoglobin level was less in FV-UAS group than that in MPCNL group (5.3 vs. 10.8 g/L, P < 0.001). Postoperative hospital stay in FV-UAS group was more shorten than that in MPCNL group (2.7 vs. 4.9 days, P < 0.001). There was no statistical significance between the two groups in SFRs during postoperative 1st day and 4th week (both P > 0.05). However, in terms of the rates of bleeding and pain, MPCNL group were both significantly higher than FV-UAS group (6.2 vs. 0.0%, P = 0.023; 16.2 vs. 2.5%, P = 0.003; respectively). Our study showed that RIRS with FV-UAS, a new partnership to treat 2-3 cm upper urinary tract stones, was satisfying as it achieved a high SFR rate and a low rate of complications. This method was safe and reproducible in clinical practice.


Subject(s)
Kidney Calculi , Urinary Calculi , Humans , Kidney Calculi/surgery , Prospective Studies , Treatment Outcome , Hemoglobins
4.
Front Surg ; 10: 1200717, 2023.
Article in English | MEDLINE | ID: mdl-37483661

ABSTRACT

Objective: To observe the efficacy and safety of retrograde intrarenal surgery combined with vacuum-assisted ureteral access sheath (V-UAS) and minimally invasive percutaneous nephrolithotomy (MPCNL) in patients with 1-2 cm infectious upper ureteral stone. Patients and methods: A total of 173 patients with 1-2 cm infectious upper ureteral stone were prospectively randomized into two groups. Eighty-six in the V-UAS group and 87 cases as control in the MPCNL group. The SFRs at different times (Postoperative 1 day, 2nd week and 4th week) was considered as the primary outcome of the study. The secondary end points were operative time, postoperative hospital stay and operative complications. Results: There was no obvious difference between two groups in patients' demographics and preoperative clinical characteristics (all P > 0.05). Postoperative data showed that the SFR at postoperative 1 day in the V-UAS group was significantly lower than that in the MPCNL group (73.2% vs. 86.2%, P = 0.034). However, there was no statistical significance between two groups in SFRs during postoperative 2 weeks and 4 weeks (All P > 0.05). The levels of WBC, CRP and PCT were all significant lower in the V-UAS group than those in the MPCNL group at the postoperative 24 h and 48 h (all P < 0.05). Postoperative complications included fever (≥38.5°C), bleeding, pain and urosepsis. In terms of the rates of fever, pain and urosepsis, MPCNL group were all significantly higher than those in the V-UAS group (10.3 vs. 2.4%, P = 0.031; 14.9 vs. 2.4%, P = 0.003; 4.6 vs. 0.0%, P = 0.044; respectively). No significant difference was found between two groups in bleeding. Meanwhile, postoperative hospital stay in the V-UAS group was more shorten than that in the MPCNL group (3.7 vs. 5.9 days, P < 0.001). Conclusions: Our study showed that RIRS with V-UAS, a new partnership to treat 1-2 cm infectious upper ureteral stones, was satisfying as it achieved a high SFR rate and a low rate of infectious complications. This method was safe and reproducible in clinical practice.

5.
ACS Appl Mater Interfaces ; 15(9): 12109-12118, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36813758

ABSTRACT

The charge transfer between the donor and acceptor determines the photogenerated carrier density in organic solar cells. However, a fundamental understanding regarding the charge transfer at donor/acceptor interfaces with high-density traps has not been fully addressed. Herein, a general correlation between trap densities and charge transfer dynamics is established by adopting a series of high-efficiency organic photovoltaic blends. It is found that the electron transfer rates are reduced with increased trap densities, while the hole transfer rates are independent of trap states. The local charges captured by traps can induce potential barrier formation around recombination centers, leading to the suppression of electron transfer. For the hole transfer process, the thermal energy provides a sufficient driving force, which ensures an efficient transfer rate. As a result, a 17.18% efficiency is obtained for PM6:BTP-eC9-based devices with the lowest interfacial trap densities. This work highlights the importance of interfacial traps in charge transfer processes and proposes an underlying insight into the charge transfer mechanism at nonideal interfaces in organic heterostructures.

6.
Biol Trace Elem Res ; 201(6): 2917-2926, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35984600

ABSTRACT

The newly developed vanadium dioxide (VO2), a material with excellent reversible and multi-stimuli responsible phase transition property, has been widely used in high-performance and energy-saving smart devices. The rapid growth of the VO2-based emerging technologies and the complex biological effect of vanadium to organisms urge a better understanding of the behavior of VO2 in vivo for safety purpose. Herein, we study the absorption, distribution, and excretion of two commercial VO2 (nanoscale SVO2 and bulk MVO2) in mice after consecutive gavage administration for up to 28 days. The absorption of both types of VO2 is as low as less than 1.5% of the injected dose within 28 days, while MVO2 is several times more difficult to be absorbed than SVO2. Almost all unabsorbed VO2 is excreted through feces. For the absorbed vanadium, bone is the organ with the largest accumulation, followed by liver, kidney, and spleen. The vanadium content in organs shows a size-, dosage-, and animal health condition-dependent manner, and increases gradually to a saturation value along with the consecutive administration. Generally, smaller particle size and higher dosage lead to higher vanadium contents in organs, and more vanadium accumulates in bone and liver in diabetic mice than in normal mice. After the treatment is stopped, the accumulated vanadium in organs decreases a lot within 14 days, even reaches to the background level in some organs, but the content of vanadium in the bone remains high after 14 days post-exposure. These findings provide basic information for the safety assessment and safe applications of VO2-based materials.


Subject(s)
Diabetes Mellitus, Experimental , Vanadium , Mice , Animals , Tissue Distribution , Particle Size
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-962624

ABSTRACT

ObjectiveTo investigate the effect of Bufeitang on intestinal flora of rats with lung Qi-deficiency syndrome of chronic obstructive pulmonary disease(COPD), and to explore the mechanism of traditional Chinese medicine in regulating intestinal flora and thus restoring the balance of lung-gut axis. MethodA total of 84 rats were randomly divided into 7 groups, including blank group, model group, fecal bacterial transplantation(FMT) group, dexamethasone group and low, medium and high dose groups of Bufeitang, 12 rats in each group. Except for the blank group, cigarette and sawdust fumigation combined with intratracheal instillation of lipopolysaccharide(LPS) were used to establish the COPD rat model with lung Qi-deficiency syndrome in all other groups. The low, medium and high dose groups of Bufeitang were intragastric administrated with Bufeitang(3.645, 7.29, 14.58 g·kg-1), the FMT group was given fecal bacteria liquid enema(10 mL·kg-1), dexamethasone group was given dexamethasone acetate tablet suspension by gavage(0.135 mg·kg-1), the blank group and model group were given equal amount of distilled water. Fresh feces were collected after 28 d of continuous intervention for 16S rRNA gene sequencing. Lung and colon tissues were stained with hematoxylin-eosin(HE) for pathomorphological observation, and enzyme-linked immunosorbent assay (ELISA) was performed to detect the contents of tumor necrosis factor-α(TNF-α) and interleukin-8(IL-8) in lung tissues. ResultCompared with the blank group, the model group showed severe abnormal lung tissue structure with alveolar atrophy and collapse accompanied by severe inflammatory cell infiltration. Compared with the model group, the extent of injury was significantly improved, and inflammatory cell infiltration was reduced with basically normal alveolar structure in the high dose group of Bufeitang. Compared with the blank group, the model group had severely abnormal colonic tissue structure, the epithelial cells in the mucosal layer were eroded and shed, the number of inflammatory cells increased, the submucosal layer was edematous and the gap was enlarged. Compared with the model group, the extent of damage was significantly improved in the medium and high dose groups of Bufeitang, the epithelial cells in the mucosal layer were neatly and closely arranged, with only a small amount of inflammatory cell infiltration and no significant degeneration. Compared with the blank group, the TNF-α and IL-8 levels of lung tissue in the model group were significantly increased(P<0.01). Compared with the model group, the TNF-α and IL-8 levels of lung tissues in the low, medium and high dose groups of Bufeitang were significantly decreased(P<0.01). Bufeitang significantly modulated the number of bacteria species as well as alpha and beta diversity of model rats, corrected the return of intestinal flora to normal abundance and diversity, and positively regulated 4 differential phyla(such as Firmicutes, Proteobacteria) and 13 differential genera(such as Turicibacter, Lactobacillus, Anaerobiospirillum, Intestinimonas) in COPD model rats with lung Qi-deficiency syndrome, and down-regulated 2 carbohydrate metabolic pathway functions, including the pentose phosphate pathway(non-oxidative branch) Ⅰ and the Calvin-Benson-Bassham cycle. ConclusionBufeitang can modulate the abundance and diversity of intestinal flora species, affect the function of metabolic pathways, repair the structure of lung and colon tissues, regulate the level of inflammatory factors, and thus improve COPD with lung Qi-deficiency syndrome. The mechanism may be related to its regulation of inflammation-related intestinal flora to restore the balance of lung-gut axis in COPD with lung Qi-deficiency syndrome.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981291

ABSTRACT

So far,the coronavirus disease 2019(COVID-19)has been persisting for nearly three years,infecting about 700 million people and causing more than 6 million deaths,which has seriously affected the human society.According to Global Initiative on Sharing All Influenza Data,there are more than 12 million SARS-CoV-2 variants,of which the five major variants of concern are Alpha,Beta,Gamma,Delta and Omicron.Their infectivity,pathogencity,and neutralization resistance have changed greatly compared with the original strain,which has brought great pressure to the prevention and control of the pandemic.Antibody level testing is critical for confirming infection,epidemiological investigation,vaccine development,and neutralizing drug preparation.Focusing on the humoral immunity against SARS-CoV-2,this paper introduces the mutation sites,neutralization resistance,and vaccination efficacy of the five variants of concern,and briefly summarizes the evolutionary characteristics,future mutation directions,and host immunity.


Subject(s)
Humans , SARS-CoV-2/genetics , Antibody Formation , COVID-19 , Gamma Rays , Antibodies, Neutralizing , Antibodies, Viral
9.
Chinese Journal of Traumatology ; (6): 351-356, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-1009499

ABSTRACT

PURPOSE@#As common clinical screening tests cannot effectively predict a difficult airway, and unanticipated difficult laryngoscopy remains a challenge for physicians. We herein used ultrasound to develop some point-of-care predictors for difficult laryngoscopy.@*METHODS@#This prospective observational study included 502 patients who underwent laryngoscopy and a detailed sonographic assessment. Patients under 18 years old, or with maxillofacial deformities or fractures, limited mouth opening, limited neck movement or history of neck surgery were excluded from the study. Laryngoscopic views of all patients were scored and grouping using the modified Cormack-Lehane (CL) scoring system. The measurements acquired comprised tongue width, the longitudinal cross-sectional area of the tongue, tongue volume, the mandible-hyoid bone distance, the hyoid bone-glottis distance, the mandible-hyoid bone-glottis angle, the skin-thyrohyoid membrane distance, the glottis-superior edge of the thyroid cartilage distance (DGTC), the skin-hyoid bone distance, and the epiglottis midway-skin distance. ANOVA and Chi-square were used to compare differences between groups. Logistic regression was used to identify risk factors for difficult laryngoscopy and it was visualized by receiver operating characteristic curves and nomogram. R version 3.6.3 and SPSS version 26.0 were used for statistical analyses.@*RESULTS@#Difficult laryngoscopy was indicated in 49 patients (CL grade Ⅲ - Ⅳ) and easy laryngoscopy in 453 patients (CL grade Ⅰ - Ⅱ). The ultrasound-measured mandible-hyoid bone-glottis angle and DGTC significantly differed between the 2 groups (p < 0.001). Difficult laryngoscopy was predicted by an area under the curve (AUC) of 0.930 with a threshold mandible-hyoid bone-glottis angle of 125.5° and by an AUC of 0.722 with a threshold DGTC of 1.22 cm. The longitudinal cross-sectional area of the tongue, tongue width, tongue volume, the mandible-hyoid distance, and the hyoid-glottis distance did not significantly differ between the groups.@*CONCLUSION@#Difficult laryngoscopy may be anticipated in patients in whom the mandible-hyoid bone-glottis angle is smaller than 125.5° or DGTC is larger than 1.22 cm.


Subject(s)
Humans , Adolescent , Laryngoscopy , Prospective Studies , Tongue/diagnostic imaging , Respiratory System , Ultrasonography
10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-971044

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease that affects brain function in neonates. At present, mild hypothermia and hyperbaric oxygen therapy are the main methods for the treatment of neonatal HIE; however, they are independent of each other and cannot be combined for synchronous treatment, without monitoring of brain function-related physiological information. In addition, parameter setting of hyperbaric oxygen chamber and mild hypothermia mattress relies on the experience of the medical practitioner, and the parameters remain unchanged throughout the medical process. This article proposes a new device for the treatment of neonatal HIE, which has the modules of hyperbaric oxygen chamber and mild hypothermic mattress, so that neonates can receive the treatment of hyperbaric oxygen chamber and/or mild hypothermic mattress based on their conditions. Meanwhile, it can realize the real-time monitoring of various physiological information, including amplitude-integrated electroencephalogram, electrocardiogram, and near-infrared spectrum, which can monitor brain function, heart rate, rhythm, myocardial blood supply, hemoglobin concentration in brain tissue, and blood oxygen saturation. In combination with an intelligent control algorithm, the device can intelligently regulate parameters according to the physiological information of neonates and give recommendations for subsequent treatment.


Subject(s)
Infant, Newborn , Humans , Hypothermia, Induced/methods , Hypothermia/therapy , Hyperbaric Oxygenation , Brain , Electroencephalography , Hypoxia-Ischemia, Brain/therapy
11.
Preprint in English | bioRxiv | ID: ppbiorxiv-481058

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics that are effective against a variety of strains of the virus. Herein, we characterize a human VH domain, F6, which we generated by sequentially panning large phage displayed VH libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized VH domain, resulted in a construct (F6-ab8-Fc) that neutralized Omicron pseudoviruses with a half-maximal neutralizing concentration (IC50) of 4.8 nM in vitro. Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 VOCs - including the recently emerged Omicron variant - and highlight a vulnerable epitope within the spike protein RBD that may be exploited to achieve broad protection against circulating variants.

12.
Int J Med Sci ; 19(1): 142-151, 2022.
Article in English | MEDLINE | ID: mdl-34975308

ABSTRACT

Background: Toll-like receptor 4 (TLR4) is implicated in neonatal hypoxic-ischemic brain damage (HIBD), but the underlying mechanism is unclear. Hypothesis: We hypothesized that TLR4 mediates brain damage after hypoxic ischemia (HI) by inducing abnormal neuroimmune responses, including activation of immune cells and expression disorder of immune factors, while early inhibition of TLR4 can alleviate the neuroimmune dysfunction. Method: Postnatal day 7 rats were randomized into control, HI, and HI+TAK-242 (TAK-242) groups. The HIBD model was developed using the Rice-Vannucci method (the left side was the ipsilateral side of HI). TAK-242 (0.5 mg/kg) was given to rat pups in the TAK-242 group at 30 min before modeling. Immunofluorescence, immunohistochemistry, and western blotting were used to determine the TLR4 expression; the number of Iba-1+, GFAP+, CD161+, MPO+, and CD3+ cells; ICAM-1 and C3a expression; and interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-10 expression in the hippocampal CA1 region. Result: Significantly increased TLR4 expression was observed in the left hippocampus, and was alleviated by TAK-242. The significant increases in Iba-1+, MPO+, and CD161+ cells at 24 h and 7 days after HI and in GFAP+ and CD3+ T cells at 7 days after HI were also counteracted by TAK-242, but no significant differences were observed among groups at 24 h after HI. ICAM-1 expression increased 24 h after HI, while C3a expression decreased; TAK-242 also alleviated these changes. TNF-α and IL-1ß expression increased, while IL-10 expression decreased at 24 h and 7 days after HI; TAK-242 counteracted the increased TNF-α and IL-1ß expression at 24 h and the changes in IL-1ß and IL-10 at 7 days, but induced no significant differences in IL-10 expression at 24 h and TNF-α expression at 7 days. Conclusion: Early TLR4 inhibition can alleviate hippocampal immune dysfunction after neonatal HIBD.


Subject(s)
Hippocampus/immunology , Hypoxia-Ischemia, Brain/immunology , Toll-Like Receptor 4/physiology , Animals , Animals, Newborn , CA1 Region, Hippocampal/immunology , CA1 Region, Hippocampal/metabolism , CD3 Complex , Cytokines/metabolism , Female , Hippocampus/metabolism , Hypoxia-Ischemia, Brain/metabolism , Intercellular Adhesion Molecule-1/metabolism , Killer Cells, Natural/metabolism , Male , Models, Animal , NK Cell Lectin-Like Receptor Subfamily B , Neutrophils/enzymology , Peroxidase , Random Allocation , Rats , Sulfonamides/pharmacology , T-Lymphocytes/metabolism , Toll-Like Receptor 4/antagonists & inhibitors
13.
Acta Physiologica Sinica ; (6): 949-958, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970090

ABSTRACT

Tanshinone IIa is a key ingredient extracted from the traditional Chinese medicine Salvia miltiorrhiza (Danshen), and is widely used to treat various cardiovascular diseases. Vascular calcification is a common pathological change of cardiovascular tissues in patients with chronic kidney disease, diabetes, hypertension and atherosclerosis. However, whether Tanshinone IIa inhibits vascular calcification and the underlying mechanisms remain largely unknown. This study aims to investigate whether Tanshinone IIa can inhibit vascular calcification using high phosphate-induced vascular smooth muscle cell and aortic ring calcification model, and high dose vitamin D3 (vD3)-induced mouse models of vascular calcification. Alizarin red staining and calcium quantitative assay showed that Tanshinone IIa significantly inhibited high phosphate-induced vascular smooth muscle cell and aortic ring calcification. qPCR and Western blot showed that Tanshinone IIa attenuated the osteogenic transition of vascular smooth muscle cells. In addition, Tanshinone IIa also significantly inhibited high dose vD3-induced mouse aortic calcification and aortic osteogenic transition. Mechanistically, Tanshinone IIa inhibited the activation of NF-κB and β-catenin signaling in normal vascular smooth muscle cells. Similar to Tanshinone IIa, inhibition of NF-κB and β-catenin signaling using the chemical inhibitors SC75741 and LF3 attenuated high phosphate-induced vascular smooth muscle cell calcification. These results suggest that Tanshinone IIa attenuates vascular calcification at least in part through inhibition of NF-κB and β-catenin signaling, and Tanshinone IIa may be a potential drug for the treatment of vascular calcification.


Subject(s)
Animals , Mice , NF-kappa B/metabolism , beta Catenin/metabolism , Signal Transduction , Myocytes, Smooth Muscle/metabolism , Vascular Calcification/metabolism , Phosphates/metabolism
14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-957044

ABSTRACT

Hepatocellular carcinoma (HCC) has a hidden onset and rapid progress. Most of the patients have lost the opportunity of surgery at the onset, and the systemic treatment effect is not satisfactory. In recent years, immune checkpoint inhibitors combined with targeted therapy have brought hope to HCC patients. In particular, treatment with atezolizumab combined with bevacizumab has been recommended by many domestic and foreign guidelines as the first-line treatment for patients with unresectable HCC who have not previously received systematic treatment. In this review, the application status of atezolizumab plus bevacizumab, coping strategies for treatment failure, cost-benefit analysis and side effects were described in order to provide reference for clinical treatment.

15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-935803

ABSTRACT

Objective: To detect the expression levels of M1-type polarization and autophagy-related indicators in the liver of trichloroethylene (TCE) -sensitized mice, and to explore the role of liver tumor necrosis factor-α (TNF-α) and tumor necrosis factor receptor 1 (TNFR1) in regulating M1-type Kupffer cells autophagy in liver injury in TCE-sensitized mice. Methods: In November 2019, according to simple random grouping, 45 SPF grade BALB/c female mice (6-8 weeks old) were divided into 4 groups: blank control group (n=5) , solvent control group (n=5) , TCE treatment group (n=18) , TCE+R7050 (inhibitor) treatment group (n=17) . Transdermally sensitized mice, 24 h after the last challenge, the mice were divided into TCE sensitized group and TCE non-sensitized group according to the skin reaction score. The livers of mice were harvested, and the pathological changes of the livers were observed under light and electron microscopes. Western blotting was used to detect the expressions of TNF-α, TNFR1 and autophagy-related indexes. The expression of inducible nitric oxide synthase (iNOS) , a marker of M1-type Kupffer cells, was detected by immunohistochemistry, and the occurrence of autophagy in M1-type Kupffer cells was detected by immunofluorescence double-labeling method. Results: The sensitization rate of TCE treatment group was 38.9% (7/18) , and TCE+R7050 treatment group was 35.3% (6/17) , with no significant difference between the two groups (P=1.000) . Compared with the blank control group, mice in the TCE sensitized group had abnormal liver ocytes, obvious liver injury, reduced mitochondria and broken endoplasmic reticulum. Western blotting results showed that the expressions of TNF-α and TNFR1 protein in the liver of the mice in the TCE sensitized group increased, the expression of iNOS protein in M1-type Kupffer cells increased, and the expressions of autophagic microtubule-associated protein 1 light-chain 3 (LC3B) and Beclin1 protein were decreased (P<0.05) . The results of immunohistochemistry showed that iNOS was not significantly expressed in the blank control group and solvent control group, and a small amount of expression was found in the TCE non-sensitized group, the positive staining area was obvious in TCE sensitized group, and the expression of iNOS was significantly increased (P<0.05) . Immunofluorescence results showed that the iNOS protein levels in the blank control group, solvent control group and TCE non-sensitized group were lower, and only partially colocalized with P62; the colocalization of iNOS with P62 in the TCE sensitized group was significantly increased. Conclusion: TNF-α/TNFR1 signaling pathway may promote liver injury in TCE-sensitized mice by inhibiting autophagy of M1-type Kupffer cells.


Subject(s)
Animals , Female , Mice , Autophagy , Kupffer Cells , Liver , Mice, Inbred BALB C , Receptors, Tumor Necrosis Factor, Type I , Solvents , Trichloroethylene/toxicity , Tumor Necrosis Factor-alpha
16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-935785

ABSTRACT

Objective: To explore the mechanism of reactive oxygen species/thioredoxin-interacting protein/nucleotide-binding oligomerization domain-like receptor 3 (ROS/TXNIP/NLRP3) pathway in the skin injury of trichloroethylene (TCE) sensitized mice. Methods: In August 2020, 40 female BALB/c mice were randomly divided into control group (n=5) , solvent control group (n=5) , TCE treatment group (n=15) and TCE+(2-(2, 2, 6, 6-Tetrameyhylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (Mito TEMPO) treatment group (n=15) . The TCE sensitization model was established. Mice in the TCE treatment group and TCE+Mito TEMPO treatment group were divided into the sensitized positive group and the sensitized negative group according to the skin erythema and edema reactions on the back of the mice 24 h after the last stimulation. The mice were sacrificed 72 h after the last stimulation, the back skin of the mice was taken, and the skin lesions were observed. Immunohistochemistry (IHC) was used to detect the expression level of NLRP3, and the Western Blot was performed to detect the expression levels of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC) , cysteinyl aspartate specific proteinase 1 (Caspase 1) , Interleukin-1β (IL-1β) and TXNIP proteins in the skin of the mice, the reactive oxygen species (ROS) kit was used to detect the level of intracellular ROS in the back skin tissue. Results: The sensitization rates of TCE treatment group and TCE+Mito TEMPO treatment group were 40.0% (6/15) and 33.3% (5/15) , respectively, and there was no significant difference between the two groups (P>0.05) . The back skin of the mice in the TCE sensitized positive group was thickened and infiltrated by a large number of inflammatory cells. The number of mitochondria in the epidermis cells was significantly reduced, the mitochondrial crest disappeared and vacuolar degeneration occurred. TCE+Mito TEMPO sensitized positive group had less damage, more mitochondria and relatively normal cell structure. Compared with the solvent control group and corresponding sensitized negative groups, the expression levels of NLRP3, ASC, Caspase 1, IL-1β, TXNIP proteins and the content of ROS in the TCE sensitized positive group and TCE+Mito TEMPO sensitized positive group were significantly increased (P<0.05) . Compared with TCE sensitized positive group, the expression levels of NLRP3, ASC, Caspase 1, IL-1β, TXNIP proteins and the content of ROS in the TCE+Mito TEMPO sensitized positive group were significantly decreased (P<0.05) . Conclusion: ROS/TXNIP/NLRP3 pathway was activated and then encouraged the release of IL-1β, finally aggravated the TCE-induced skin injury.


Subject(s)
Animals , Female , Mice , Carrier Proteins , Caspase 1/metabolism , Inflammasomes/metabolism , Mice, Inbred BALB C , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Solvents , Thioredoxins/metabolism , Trichloroethylene/toxicity
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940948

ABSTRACT

OBJECTIVE@#To investigate the serum microRNA (miRNA) expression and examine the impact of miRNA expression profiles on T helper type 17 (Th17)/regulatory T cells (Treg) imbalance among patients with cystic echinococcosis, so as to provide insights into the illustration of the mechanisms underlying chronic Echinococcus granulosus infections, and long-term pathogenesis.@*METHODS@#Total RNA was extracted from the sera of cystic echinococcosis patients and healthy controls, and subjected to high-throughput sequencing with the Illumina sequencing platform. Known miRNAs were annotated and new miRNAs were predicted using the miRBase database and the miRDeep2 tool, and differentially expressed miRNAs were identified. The target genes of differentially expressed miRNAs were predicted using the software miRanda and TargetScan, and the intersection was selected for Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Among the differentially expressed miRNAs with the 20 highest fold changes, miRNAs that targeted genes relating to key transcription factors RORC and FOXP3 that determine the production of Th17 and Treg cells or their important regulatory pathways (PI3K-Akt and mTOR pathways) were matched.@*RESULTS@#A total of 53 differentially expressed miRNAs were screened in sera of cystic echinococcosis patients and healthy controls, including 47 up-regulated miRNAs and 6 down-regulated miRNAs. GO enrichment analysis showed that these differentially expressed miRNA were involved DNA transcription and translation, cell components, cell morphology, neurodevelopment and metabolic decomposition, and KEGG pathway analysis showed that the differentially expressed miRNA were mainly involved in MAPK, PI3K-Akt and mTOR signaling pathways. Among the differentially expressed miRNAs with the 20 highest fold changes, there were 3 miRNAs that had a potential for target regulation of RORC, and 15 miRNAs that had a potential to target the PI3K-Akt and mTOR signaling pathways.@*CONCLUSIONS@#Significant changes are found in serum miRNA expression profiles among patients with E. granulosus infections, and differentially expressed miRNAs may lead to Th17/Treg imbalance through targeting the key transcription factors of Th17/Treg or PI3K-Akt and mTOR pathways, which facilitates the long-term parasitism of E. granulosus in hosts and causes a chronic disease.


Subject(s)
Humans , Echinococcosis/genetics , Gene Expression Profiling , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , T-Lymphocytes, Regulatory , TOR Serine-Threonine Kinases/genetics , Th17 Cells , Transcription Factors/genetics
18.
Preprint in English | bioRxiv | ID: ppbiorxiv-473380

ABSTRACT

The newly reported Omicron variant is poised to replace Delta as the most rapidly spread SARS-CoV-2 variant across the world. Cryo-EM structural analysis of the Omicron variant spike protein in complex with human ACE2 reveals new salt bridges and hydrogen bonds formed by mutated residues R493, S496 and R498 in the RBD with ACE2. These interactions appear to compensate for other Omicron mutations such as K417N known to reduce ACE2 binding affinity, explaining our finding of similar biochemical ACE2 binding affinities for Delta and Omicron variants. Neutralization assays show that pseudoviruses displaying the Omicron spike protein exhibit increased antibody evasion, with greater evasion observed in sera obtained from unvaccinated convalescent patients as compared to doubly vaccinated individuals (8-vs 3-fold). The retention of strong interactions at the ACE2 interface and the increase in antibody evasion are molecular factors that likely contribute to the increased transmissibility of the Omicron variant.

19.
Preprint in English | bioRxiv | ID: ppbiorxiv-473178

ABSTRACT

Mutations in the spike glycoproteins of SARS-CoV-2 variants of concern have independently been shown to enhance aspects of spike protein fitness. Here, we report the discovery of a novel antibody fragment (VH ab6) that neutralizes all major variants, with a unique mode of binding revealed by cryo-EM studies. Further, we provide a comparative analysis of the mutational effects within variant spikes and identify the structural role of mutations within the NTD and RBD in evading antibody neutralization. Our analysis shows that the highly mutated Gamma N-terminal domain exhibits considerable structural rearrangements, partially explaining its decreased neutralization by convalescent sera. Our results provide mechanistic insights into the structural, functional, and antigenic consequences of SARS-CoV-2 spike mutations and highlight a spike protein vulnerability that may be exploited to achieve broad protection against circulating variants.

20.
Oxid Med Cell Longev ; 2021: 9979706, 2021.
Article in English | MEDLINE | ID: mdl-34504645

ABSTRACT

Angiotensin II- (Ang II-) induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure. Choline exerts cardioprotective effects; however, its effects on Ang II-induced cardiomyocyte apoptosis are unclear. In this study, the role and underlying mechanism of choline in regulating Ang II-induced cardiomyocyte apoptosis were investigated using a model of cardiomyocyte apoptosis, which was induced by exposing neonatal rat cardiomyocytes to Ang II (10-6 M, 48 h). Choline promoted heat shock transcription factor 1 (HSF1) nuclear translocation and the intracellular domain of Notch1 (NICD) expression. Consequently, choline attenuated Ang II-induced increases in mitochondrial reactive oxygen species (mtROS) and promotion of proapoptotic protein release from mitochondria, including cytochrome c, Omi/high-temperature requirement protein A2, and second mitochondrial activator of caspases/direct inhibitor of apoptosis-binding protein with low P. The reversion of these events attenuated Ang II-induced increases in cardiomyocyte size and numbers of terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling-positive cells, presumably via type 3 muscarinic acetylcholine receptor (M3AChR). Indeed, downregulation of M3AChR or Notch1 blocked choline-mediated upregulation of NICD and nuclear HSF1 expression, as well as inhibited mitochondrial apoptosis pathway and cardiomyocyte apoptosis, indicating that M3AChR and Notch1/HSF1 activation confer the protective effects of choline. In vivo studies were performed in parallel, in which rats were infused with Ang II for 4 weeks to induce cardiac apoptosis. The results showed that choline alleviated cardiac remodeling and apoptosis of Ang II-infused rats in a manner related to activation of the Notch1/HSF1 pathway, consistent with the in vitro findings. Taken together, our results reveal that choline impedes oxidative damage and cardiomyocyte apoptosis by activating M3AChR and Notch1/HSF1 antioxidant signaling, and suggest a novel role for the Notch1/HSF1 signaling pathway in the modulation of cardiomyocyte apoptosis.


Subject(s)
Angiotensin II/adverse effects , Choline/metabolism , Heat Shock Transcription Factors/metabolism , Myocytes, Cardiac/metabolism , Animals , Apoptosis , Male , Rats , Rats, Sprague-Dawley , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...