Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-466402

ABSTRACT

The global pandemic of COVID-19 caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection confers great threat to the public health. Human breastmilk is an extremely complex with nutritional composition to nourish infants and protect them from different kinds of infection diseases and also SARS-CoV-2 infection. Previous studies have found that breastmilk exhibited potent antiviral activity against SARS-CoV-2 infection. However, it is still unknown which component(s) in the breastmilk is responsible for its antiviral activity. Here, we identified Lactoferrin (LF), MUC1 and -Lactalbumin (-LA) from human breastmilk by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and in vitro confirmation that inhibited SARS-CoV-2 infection and analyzed their antiviral activity using the SARS-CoV-2 pseudovirus system and transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP) in the Huh7.5, Vero E6 and Caco-2-N cell lines. Additionally, we found that LF and MUC1 could inhibit viral attachment, entry and post-entry replication, while -LA just inhibit viral attachment and entry. Importantly, LF, MUC1 and -LA possess potent antiviral activities towards not only wild-type but also variants such as B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and B.1.617.1 (kappa). Moreover, LF from other species (e.g., bovine and goat) is still capable of blocking viral attachment to cellular heparan sulfate. Taken together, our study provided the first line of evidence that human breastmilk components (LF, MUC1 and -LA) are promising therapeutic candidates warranting further development or treatingVID-19 given their exceedingly safety levels.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-313270

ABSTRACT

Since the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in several somatic cells, little is known about the infection of SASRS-CoV-2 and its related pangolin coronavirus (GX_P2V). Here we present for the first time that SARS-CoV-2 pseudovirus and GX_P2V could infect lung progenitor and even anterior foregut endoderm cells causing these cells death, which differentiated from human embryonic stem cells (hESCs). The infection and replication of SARS-CoV-2 and GX_P2V were inhibited when treated with whey protein of breastmilk and Remdesivir, confirming that these two viruses could infect lung progenitor and even anterior foregut endoderm. Moreover, we found that SARS-CoV-2 pseudovirus could infect endoderm and ectoderm. We found that whey protein blocked SARS-CoV-2 infecting these cells. In line with the SARS-CoV-2 results, GX_P2V could also infected endoderm and ectoderm, and also was inhibited by Remdesivir treatment. Although expressing coronavirus related receptor such as ACE2 and TMPRSS2, mesoderm cells are not permissive for SARS-CoV-2 and GX_P2V infection, which needed further to study the mechanisms. Interestingly, we also found that hESCs, which also express ACE2 and TMPRSS2 markers, are permissive for GX_P2V but not SARS-CoV-2 pseudovirus infection and replication, indicating the widespread cell types for GX_P2V infection. Heparin treatment blocked efficiently viral infection. These results provided insight that these stem cells maybe provided a stable repository of coronavirus function or genome. The potential consequence of SARS-CoV-2 and animal coronavirus such as GX_P2V infection in hESCs, germ layer and induced progenitors should be closely monitored.

SELECTION OF CITATIONS
SEARCH DETAIL
...