Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
2.
Front Immunol ; 14: 1196434, 2023.
Article in English | MEDLINE | ID: mdl-38077406

ABSTRACT

The herb Prunella vulgaris has shown significant immune-stimulatory and anti-inflammatory effects in mouse models. Here, the effects of a novel Prunella vulgaris-containing herbal mixture, PV-1, were examined in several mouse models for cancer, including chemically induced models of lung and oral cancers as well as syngraft models for lung cancer and melanoma. PV-1, consisting of extracts from Prunella vulgaris, Polygonum bistorta, Sonchus brachyotus and Dictamnus dasycarpus, exhibited no toxicity in a dose escalation study in A/J mice. PV-1 significantly inhibited mouse lung tumor development induced by the lung carcinogens vinyl carbamate and benzo[a]pyrene. PV-1 also hindered the induction of oral squamous cell carcinomas in C57BL/6 mice caused by 4-nitroquinoline-1-oxide. Flow cytometry analysis showed that PV-1 increased the numbers of CD8+ tumor-infiltrating lymphocytes (TILs) and increased the production of granzyme B, TNF-α, and IFN-γ by CD8+ TILs. PV-1 also suppressed granulocytic myeloid-derived suppressor cell numbers (g-MDSCs) and improved the anti-cancer activity of anti-PD-1 immunotherapy. These results indicate that PV-1 remodels the tumor immune microenvironment by selectively inhibiting g-MDSCs and increasing CD8+ TILs within tumors, resulting in decreased immune suppression and enhanced cancer chemopreventive efficacy.


Subject(s)
Head and Neck Neoplasms , Lung Neoplasms , Mouth Neoplasms , Prunella , Mice , Animals , Mice, Inbred C57BL , Lung Neoplasms/drug therapy , Mouth Neoplasms/drug therapy , Head and Neck Neoplasms/drug therapy , Chemoprevention , Tumor Microenvironment
3.
NPJ Precis Oncol ; 7(1): 108, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880313

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that has a poor prognosis. TOP2A is a key enzyme in DNA replication and is a therapeutic target for breast and other cancers. TOP2A-specific Th1-promoting epitopes with optimal binding affinity to MHC II were identified using a combined scoring system. The multi-peptide TOP2A vaccine elicited a robust immunologic response in immunized mice, as demonstrated by the significant production of Th1 cytokines from immunized animals' splenocytes stimulated in vitro with TOP2A peptides. Anti-tumor efficacy of the TOP2A vaccine was demonstrated in a syngeneic TNBC mouse model, in which pre-graft preventive vaccination was associated with significantly decreased tumor growth as compared to adjuvant control. In a genetically engineered mouse (GEM) model of TNBC, vaccinated animals demonstrated a significant reduction in tumor incidence and average tumor volume compared to adjuvant control. Finally, we examined TCR sequences in CD4 tumor Infiltrating lymphocytes (TIL) from vaccinated mice and found that the TIL contained TCR sequences specific to the three vaccine peptides. These data indicate that our newly developed multi-peptide TOP2A vaccine is highly immunogenic, elicits TILs with vaccine specific TCRs, and is highly effective in preventing and intercepting TNBC development and progression in vivo.

4.
Front Immunol ; 14: 1166951, 2023.
Article in English | MEDLINE | ID: mdl-37520581

ABSTRACT

The development of chemopreventive strategies with the ability to prevent the progression of lung lesions to malignant cancers would reduce the mortality and morbidity resulting from this deadly disease. Delivery of microRNA (miRNA) by inhalation is a novel method for lung cancer prevention. In this study, we investigated the combined efficacy of aerosolized miR-138-5p and miR-200c miRNA mimics in lung cancer prevention. Combination of the two miRNAs inhibited Benzo(a)pyrene (B((a))P)-induced lung adenomas and N-nitroso-tris-chloroethylurea (NTCU)-induced lung squamous cell carcinomas with no detectable side effects. Using single-cell RNA sequencing (scRNA-seq) and imaging mass cytometry (IMC), we found that both miRNAs inhibited programmed cell death ligand 1 (PD-L1) expression. Our flow cytometry results showed that aerosolized delivery of combined miRNAs increased CD4+ and CD8+ T cells and reduced the expression of programmed cell death protein 1 (PD-1) and T-regulatory cells. Our results demonstrated that the delivery of aerosolized microRNAs targeting PD-L1 can be highly effective in preventing lung cancer development and progression in mice.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Animals , Mice , B7-H1 Antigen/metabolism , MicroRNAs/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/prevention & control , Lung Neoplasms/metabolism , CD8-Positive T-Lymphocytes/metabolism
5.
Front Immunol ; 14: 1036563, 2023.
Article in English | MEDLINE | ID: mdl-36875137

ABSTRACT

Epidermal growth factor receptor (EGFR) mutations occur in about 50% of lung adenocarcinomas in Asia and about 15% in the US. EGFR mutation-specific inhibitors have been developed and made significant contributions to controlling EGFR mutated non-small cell lung cancer. However, resistance frequently develops within 1 to 2 years due to acquired mutations. No effective approaches that target mutant EGFR have been developed to treat relapse following tyrosine kinase inhibitor (TKI) treatment. Vaccination against mutant EGFR is one area of active exploration. In this study, we identified immunogenic epitopes for the common EGFR mutations in humans and formulated a multi-peptide vaccine (Emut Vax) targeting the EGFR L858R, T790M, and Del19 mutations. The efficacy of the Emut Vax was evaluated in both syngeneic and genetic engineered EGFR mutation-driven murine lung tumor models with prophylactic settings, where the vaccinations were given before the onset of the tumor induction. The multi-peptide Emut Vax effectively prevented the onset of EGFR mutation-driven lung tumorigenesis in both syngeneic and genetically engineered mouse models (GEMMs). Flow cytometry and single-cell RNA sequencing were conducted to investigate the impact of Emut Vax on immune modulation. Emut Vax significantly enhanced Th1 responses in the tumor microenvironment and decreased suppressive Tregs to enhance anti-tumor efficacy. Our results show that multi-peptide Emut Vax is effective in preventing common EGFR mutation-driven lung tumorigenesis, and the vaccine elicits broad immune responses that are not limited to anti-tumor Th1 response.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , ErbB Receptors , Mutation , Protein Kinase Inhibitors , Neoplasm Recurrence, Local , Carcinogenesis , Cell Transformation, Neoplastic , Tumor Microenvironment
6.
Adv Sci (Weinh) ; 9(26): e2105885, 2022 09.
Article in English | MEDLINE | ID: mdl-35861366

ABSTRACT

Lung cancer is the leading cause of cancer death worldwide. Vaccination against EGFR can be one of the venues to prevent lung cancer. Blocking glutamine metabolism has been shown to improve anticancer immunity. Here, the authors report that JHU083, an orally active glutamine antagonist prodrug designed to be preferentially activated in the tumor microenvironment, has potent anticancer effects on EGFR-driven mouse lung tumorigenesis. Lung tumor development is significantly suppressed when treatment with JHU083 is combined with an EGFR peptide vaccine (EVax) than either single treatment. Flow cytometry and single-cell RNA sequencing of the lung tumors reveal that JHU083 increases CD8+ T cell and CD4+ Th1 cell infiltration, while EVax elicits robust Th1 cell-mediated immune responses and protects mice against EGFRL858R mutation-driven lung tumorigenesis. JHU083 treatment decreases immune suppressive cells, including both monocytic- and granulocytic-myeloid-derived suppressor cells, regulatory T cells, and pro-tumor CD4+ Th17 cells in mouse models. Interestingly, Th1 cells are found to robustly upregulate oxidative metabolism and adopt a highly activated and memory-like phenotype upon glutamine inhibition. These results suggest that JHU083 is highly effective against EGFR-driven lung tumorigenesis and promotes an adaptive T cell-mediated tumor-specific immune response that enhances the efficacy of EVax.


Subject(s)
Cancer Vaccines , Lung Neoplasms , Animals , Azo Compounds , Cancer Vaccines/therapeutic use , Caproates , Carcinogenesis , ErbB Receptors/genetics , ErbB Receptors/therapeutic use , Glutamine/therapeutic use , Immunotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/prevention & control , Mice , Tumor Microenvironment
7.
Cancers (Basel) ; 14(10)2022 May 21.
Article in English | MEDLINE | ID: mdl-35626143

ABSTRACT

Combined treatment targeting mitochondria may improve the efficacy of lung cancer chemoprevention. Here, mitochondria-targeted honokiol (Mito-HNK), an inhibitor of mitochondrial complex I and STAT3 phosphorylation, and mitochondria-targeted lonidamine (Mito-LND), an inhibitor of mitochondrial complexes I/II and AKT/mTOR/p70S6K signaling, were evaluated for their combinational chemopreventive efficacy on mouse lung carcinogenesis. All chemopreventive treatments began one-week post-carcinogen treatment and continued daily for 24 weeks. No evidence of toxicity (including liver toxicity) was detected by monitoring serum levels of alanine aminotransferase and aspartate aminotransferase enzymes. Mito-HNK or Mito-LND treatment alone reduced tumor load by 56% and 48%, respectively, whereas the combination of Mito-HNK and Mito-LND reduced tumor load by 83%. To understand the potential mechanism(s) of action for the observed combinatorial effects, single-cell RNA sequencing was performed using mouse tumors treated with Mito-HNK, Mito-LND, and their combination. In lung tumor cells, Mito-HNK treatment blocked the expression of genes involved in mitochondrial complex ǀ, oxidative phosphorylation, glycolysis, and STAT3 signaling. Mito-LND inhibited the expression of genes for mitochondrial complexes I/II, oxidative phosphorylation, and AKT/mTOR/p70S6K signaling in lung tumor cells. In addition to these changes, a combination of Mito-HNK with Mito-LND decreased arginine and proline metabolism, N-glycan biosynthesis, and tryptophan metabolism in lung tumor cells. Our results demonstrate that Mito-LND enhanced the antitumor efficacy of Mito-HNK, where both compounds inhibited common targets (oxidative phosphorylation) as well as unique targets for each agent (STAT3 and mTOR signaling). Therefore, the combination of Mito-HNK with Mito-LND may present an effective strategy for lung cancer chemoprevention.

8.
Adv Sci (Weinh) ; 9(12): e2101267, 2022 04.
Article in English | MEDLINE | ID: mdl-35243806

ABSTRACT

Atovaquone, an FDA-approved drug for malaria, is known to inhibit mitochondrial electron transport. A recently synthesized mitochondria-targeted atovaquone increased mitochondrial accumulation and antitumor activity in vitro. Using an in situ vaccination approach, local injection of mitochondria-targeted atovaquone into primary tumors triggered potent T cell immune responses locally and in distant tumor sites. Mitochondria-targeted atovaquone treatment led to significant reductions of both granulocytic myeloid-derived suppressor cells and regulatory T cells in the tumor microenvironment. Mitochondria-targeted atovaquone treatment blocks the expression of genes involved in oxidative phosphorylation and glycolysis in granulocytic-myeloid-derived suppressor cells and regulatory T cells, which may lead to death of granulocytic-myeloid-derived suppressor cells and regulatory T cells. Mitochondria-targeted atovaquone inhibits expression of genes for mitochondrial complex components, oxidative phosphorylation, and glycolysis in both granulocytic-myeloid-derived suppressor cells and regulatory T cells. The resulting decreases in intratumoral granulocytic-myeloid-derived suppressor cells and regulatory T cells could facilitate the observed increase in tumor-infiltrating CD4+ T cells. Mitochondria-targeted atovaquone also improves the anti-tumor activity of PD-1 blockade immunotherapy. The results implicate granulocytic-myeloid-derived suppressor cells and regulatory T cells as novel targets of mitochondria-targeted atovaquone that facilitate its antitumor efficacy.


Subject(s)
Neoplasms , Atovaquone/metabolism , Atovaquone/pharmacology , Atovaquone/therapeutic use , Humans , Mitochondria/metabolism , Oxidative Phosphorylation , Tumor Microenvironment , Vaccination
10.
Adv Sci (Weinh) ; 8(17): e2100629, 2021 09.
Article in English | MEDLINE | ID: mdl-34236760

ABSTRACT

MicroRNAs are potential candidates for lung cancer prevention and therapy. A major limitation is the lack of an efficient delivery system to directly deliver miRNA to cancer cells while limiting systemic exposure. The delivery of miRNA via inhalation is a potential strategy for lung cancer prevention in high-risk individuals. In this study, the authors investigate the efficacy of aerosolized let-7b miRNA treatment in lung cancer prevention. Let-7b shows significant inhibition of B[a]P-induced lung adenoma with no detectable side effects. Single-cell RNA sequencing of tumor-infiltrating T cells from primary tumors reveals that Let-7b post-transcriptionally suppresses PD-L1 and PD-1 expression in the tumor microenvironment, suggesting that let-7b miRNAs may promote antitumor immunity in vivo. Let-7b treatment decreases the expression of PD-1 in CD8+ T cells and reduces PD-L1 expression in lung tumor cells. The results suggest that this aerosolized let-7b mimic is a promising approach for lung cancer prevention, and that the in vivo tumor inhibitory effects of let-7b are mediated, at least in part, by immune-promoting effects via downregulating PD-L1 in tumors and/or PD-1 on CD8+ T cells. These changes potentiate antitumor CD8+ T cell immune responses, and ultimately lead to tumor inhibition.


Subject(s)
Carcinogenesis/immunology , Lung Neoplasms/immunology , Lung Neoplasms/therapy , MicroRNAs/administration & dosage , Tumor Microenvironment/immunology , Aerosols , Animals , Carcinogenesis/genetics , Disease Models, Animal , Lung/immunology , Lung Neoplasms/genetics , Mice , MicroRNAs/genetics , Tumor Microenvironment/genetics
11.
Nat Commun ; 11(1): 5084, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033253

ABSTRACT

Identifying factors underlying resistance to immune checkpoint therapy (ICT) is still challenging. Most cancer patients do not respond to ICT and the availability of the predictive biomarkers is limited. Here, we re-analyze a publicly available single-cell RNA sequencing (scRNA-seq) dataset of melanoma samples of patients subjected to ICT and identify a subset of macrophages overexpressing TREM2 and a subset of gammadelta T cells that are both overrepresented in the non-responding tumors. In addition, the percentage of a B cell subset is significantly lower in the non-responders. The presence of these immune cell subtypes is corroborated in other publicly available scRNA-seq datasets. The analyses of bulk RNA-seq datasets of the melanoma samples identify and validate a signature - ImmuneCells.Sig - enriched with the genes characteristic of the above immune cell subsets to predict response to immunotherapy. ImmuneCells.Sig could represent a valuable tool for clinical decision making in patients receiving immunotherapy.


Subject(s)
Gene Expression Profiling , Immunotherapy , Macrophages/metabolism , Membrane Glycoproteins/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Immunologic/metabolism , T-Lymphocytes/metabolism , Area Under Curve , B-Lymphocytes/metabolism , Biomarkers, Tumor/metabolism , Humans , Macrophages/pathology , Melanoma/genetics , Melanoma/pathology , Reproducibility of Results
12.
Cell Commun Signal ; 18(1): 58, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32264893

ABSTRACT

BACKGROUND: Magnolia extract (ME) is known to inhibit cancer growth and metastasis in several cell types in vitro and in animal models. However, there is no detailed study on the preventive efficacy of ME for oral cancer, and the key components in ME and their exact mechanisms of action are not clear. The overall goal of this study is to characterize ME preclinically as a potent oral cancer chemopreventive agent and to determine the key components and their molecular mechanism(s) that underlie its chemopreventive efficacy. METHODS: The antitumor efficacy of ME in oral cancer was investigated in a 4-nitroquinoline-1-oxide (4NQO)-induced mouse model and in two oral cancer orthotopic models. The effects of ME on mitochondrial electron transport chain activity and ROS production in mouse oral tumors was also investigated. RESULTS: ME did not cause detectable side effects indicating that it is a promising and safe chemopreventive agent for oral cancer. Three major key active compounds in ME (honokiol, magnolol and 4-O-methylhonokiol) contribute to its chemopreventive effects. ME inhibits mitochondrial respiration at complex I of the electron transport chain, oxidizes peroxiredoxins, activates AMPK, and inhibits STAT3 phosphorylation, resulting in inhibition of the growth and proliferation of oral cancer cells. CONCLUSION: Our data using highly relevant preclinical oral cancer models, which share histopathological features seen in human oral carcinogenesis, suggest a novel signaling and regulatory role for mitochondria-generated superoxide and hydrogen peroxide in suppressing oral cancer cell proliferation, progression, and metastasis. Video abstract.


Subject(s)
Antineoplastic Agents, Phytogenic , Biphenyl Compounds , Lignans , Magnolia/chemistry , Mouth Neoplasms/prevention & control , Plant Extracts , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Cell Line, Tumor , Drug Evaluation, Preclinical , Female , Humans , Lignans/pharmacology , Lignans/therapeutic use , Mice , Mice, Nude , Mitochondria/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Reactive Oxygen Species
13.
Sci Rep ; 9(1): 10918, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358815

ABSTRACT

Immune checkpoint blockade therapy (ICBT) can unleash T-cell responses against cancer. However, only a small fraction of patients exhibited responses to ICBT. The role of immune checkpoints in cancer cells is not well understood. In this study, we analyzed T-cell coinhibitory/costimulatory genes across more than 1100 samples of the Cancer Cell Line Encyclopedia (CCLE). Nearly 90% of such genes were not expressed or had low expression across the CCLE cancer cell lines. Cell line screening showed the enrichment of cancer cells deprived of the expression of CD27, CEACAM1, CTLA4, LRIG1, PDCD1LG2, or TNFRSF18, suggesting their role as tumor suppressor. The metagene expression signature derived from these six genes - Immu6Metagene was associated with prolonged survival phenotypes. A common set of five oncogenic pathways were significantly inhibited in different types of tumors of the cancer patients with good survival outcome and high Immu6Metagene signature expression. These pathways were TGF-ß signaling, angiogenesis, EMT, hypoxia and mitotic process. Our study showed that oncoimmunology related molecules especially the six genes of the Immu6Metagene signature may play the tumor suppressor role in certain cancers. Therefore, the ICBT targeting them should be considered in such context to improve the efficacy.


Subject(s)
Genes, Tumor Suppressor , Neoplasms/immunology , T-Lymphocytes/immunology , Cell Line, Tumor , Databases as Topic , Humans , Neoplasms/genetics , T-Lymphocytes/pathology
14.
Cancers (Basel) ; 11(4)2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30987362

ABSTRACT

BACKGROUND: Chemopreventive agent (CPA) treatment is one of the main preventive options for lung cancer. However, few studies have been done on pharmacodynamic biomarkers of known CPAs for lung cancer. MATERIALS AND METHODS: In this study, we treated mouse models of lung squamous cell carcinoma with three different CPAs (MEK inhibitor: AZD6244, PI-3K inhibitor: XL-147 and glucocorticoid: Budesonide) and examined circulating exosomal miRNAs in the plasma of each mouse before and after treatment. RESULTS: Compared to baselines, we found differentially expressed exosomal miRNAs after AZD6244 treatment (n = 8, FDR < 0.05; n = 55, raw p-values < 0.05), after XL-147 treatment (n = 4, FDR < 0.05; n = 26, raw p-values < 0.05) and after Budesonide treatment (n = 1, FDR < 0.05; n = 36, raw p-values < 0.05). In co-expression analysis, we found that modules of exosomal miRNAs reacted to CPA treatments differently. By variable selection, we identified 11, 9 and nine exosomal miRNAs as predictors for AZD6244, XL-147 and Budesonide treatment, respectively. Integrating all the results, we highlighted 4 miRNAs (mmu-miR-215-5p, mmu-miR-204-5p, mmu-miR-708-3p and mmu-miR-1298-5p) as the key for AZD6244 treatment, mmu-miR-23a-3p as key for XL-147 treatment, and mmu-miR-125a-5p and mmu-miR-16-5p as key for Budesonide treatment. CONCLUSIONS: This is the first study to use circulating exosomal miRNAs as pharmacodynamic biomarkers for CPA treatment in lung cancer.

15.
Nano Lett ; 19(4): 2231-2242, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30873838

ABSTRACT

Bexarotene has shown inhibition of lung and mammary gland tumorigenesis in preclinical models and in clinical trials. The main side effects of orally administered bexarotene are hypertriglyceridemia and hypercholesterolemia. We previously demonstrated that aerosolized bexarotene administered by nasal inhalation has potent chemopreventive activity in a lung adenoma preclinical model without causing hypertriglyceridemia. To facilitate its future clinical translation, we modified the formula of the aerosolized bexarotene with a clinically relevant solvent system. This optimized aerosolized bexarotene formulation was tested against lung squamous cell carcinoma mouse model and lung adenocarcinoma mouse model and showed significant chemopreventive effect. This new formula did not cause visible signs of toxicity and did not increase plasma triglycerides or cholesterol. This aerosolized bexarotene was evenly distributed to the mouse lung parenchyma, and it modulated the microenvironment in vivo by increasing the tumor-infiltrating T cell population. RNA sequencing of the lung cancer cell lines demonstrated that multiple pathways are altered by bexarotene. For the first time, these studies demonstrate a new, clinically relevant aerosolized bexarotene formulation that exhibits preventive efficacy against the major subtypes of lung cancer. This approach could be a major advancement in lung cancer prevention for high risk populations, including former and present smokers.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Aerosols/administration & dosage , Bexarotene/administration & dosage , Carcinoma, Squamous Cell/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Administration, Oral , Animals , Anticarcinogenic Agents/administration & dosage , Anticarcinogenic Agents/adverse effects , Bexarotene/adverse effects , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Disease Models, Animal , Drug Compounding , High-Throughput Nucleotide Sequencing , Humans , Hypercholesterolemia/chemically induced , Hypercholesterolemia/pathology , Hypercholesterolemia/prevention & control , Lung/drug effects , Lung/pathology , Lymphocytes, Tumor-Infiltrating/drug effects , Mice , Signal Transduction/drug effects
16.
iScience ; 9: 258-277, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30439581

ABSTRACT

Although PD-1-blocking immunotherapies demonstrate significant therapeutic promise, a subset of the patients could develop hyperprogressive disease (HPD) with accelerated tumor growth after anti-PD1 immunotherapy. To elucidate the underlying mechanisms, we compared the mutational and transcriptional landscapes between the pre- and post-therapy tumors of two patients developing HPD after anti-PD-1 immunotherapy. In post-therapy HPD tumors, somatic mutations were found in known cancer genes, including tumor suppressor genes such as TSC2 and VHL, along with transcriptional upregulation of oncogenic pathways, including IGF-1, ERK/MAPK, PI3K/AKT, and TGF-ß. We found that post-therapy HPD tumors were less immunogenic than pre-therapy tumors, concurrent with an increased presence of ILC3 cells, a subset of innate lymphoid cells. We also developed a gene expression signature predictive of HPD. In summary, we identified the genomics and immune features associated with HPD, which may help identify patients at risk of adverse clinical outcome after anti-PD-1 immunotherapy.

17.
iScience ; 3: 192-207, 2018 May 25.
Article in English | MEDLINE | ID: mdl-30428319

ABSTRACT

We synthesized a mitochondria-targeted honokiol (Mito-HNK) that facilitates its mitochondrial accumulation; this dramatically increases its potency and efficacy against highly metastatic lung cancer lines in vitro, and in orthotopic lung tumor xenografts and brain metastases in vivo. Mito-HNK is >100-fold more potent than HNK in inhibiting cell proliferation, inhibiting mitochondrial complex ?, stimulating reactive oxygen species generation, oxidizing mitochondrial peroxiredoxin-3, and suppressing the phosphorylation of mitoSTAT3. Within lung cancer brain metastases in mice, Mito-HNK induced the mediators of cell death and decreased the pathways that support invasion and proliferation. In contrast, in the non-malignant stroma, Mito-HNK suppressed pathways that support metastatic lesions, including those involved in inflammation and angiogenesis. Mito-HNK showed no toxicity and targets the metabolic vulnerabilities of primary and metastatic lung cancers. Its pronounced anti-invasive and anti-metastatic effects in the brain are particularly intriguing given the paucity of treatment options for such patients either alone or in combination with standard chemotherapeutics.

18.
Sci Rep ; 8(1): 8895, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29891994

ABSTRACT

As a consequence of exposure to environmental toxicants, a "field cancerization" effect occurs in the lung, resulting in the development of a field of initiated, but morphologically normal appearing cells within a damaged epithelium containing mutations in oncogene or tumor suppressor genes. Unlike humans, whose airway field of injury associated with lung cancer has long been investigated with airway brushings obtained via bronchoscopy, no methods are available for similar studies in the mouse due to the small size of the murine airways. In this protocol, we describe a detailed method for performing airway brushing from a live mouse, which enables repeated sampling from the same mouse and thus, mimicking the bronchoscopy protocol used in humans. Using this approach in the N-nitroso-tris-chloroethylurea (NTCU)-induced mouse lung squamous cell carcinoma (SCC) model, we isolated airway epithelial cells with intact cell membrane structure and then performed transcriptome sequencing (RNA-Seq). We found activation of the PI3K signaling network to be the most significant in cytologically normal bronchial airway epithelial cells of mice with preneoplastic lung SCC lesions. Prolonged exposure to NTCU also induced activation of NF-kappaB (NFƙB), the downstream pathway of PI3K; this NTCU-induced lung SCC progression can be reversed by blocking the NFƙB pathway.


Subject(s)
Carcinoma, Squamous Cell/pathology , Lung Neoplasms/pathology , Respiratory Mucosa/pathology , Specimen Handling/methods , Transcriptome , Animals , Carcinoma, Squamous Cell/chemically induced , Disease Models, Animal , Epithelial Cells/pathology , Lung Neoplasms/chemically induced , Mice
19.
Oncotarget ; 9(7): 7424-7441, 2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29484121

ABSTRACT

Lung squamous cell carcinoma (LUSC) is a major subtype of Non-Small Cell Lung Cancer. To increase our understanding of the LUSC pathobiology, we performed exome sequencing and RNA-seq in 16 murine carcinogen-induced LUSC tumors and 8 normal murine lung tissue samples. Additionally, we conducted single-cell RNA-seq on two independent tumors from the same murine model. We identified a list of 59 cancer genes recurrently mutated in the mice LUSC tumors, 47 (80%) of which were also mutated in human LUSCs. At the single cell level, we detected unique clonal mutation patterns for each of the two LUSC tumors, being initiated from clones carrying the mutant Igfbp7 and Trp53 genes, respectively. We also identified an expression signature serving as an effective classifier for LUSC tumors and a strong predictor of survival outcomes of lung cancer patients. Lastly, we found that some of the mutant LUSC genes were associated with the significantly altered tumoral expression of inhibitory immune checkpoint genes such as PD-L1, VISTA, TIM3 and LAG3 in human LUSCs. The novel findings of clonal evolution, mutational landscapes and expression signatures of LUSC suggested new targets for the overall LUSC therapy and the immunotherapy of LUSC.

20.
Oncotarget ; 8(42): 72447-72456, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-29069801

ABSTRACT

Gefitinib showed response in phase II clinical trials and with better clinical response in lung cancer with activating mutations in the tyrosine kinase domain of the EGFR. Questions of toxicity and potential dosing regimens impede the use in a prevention setting. This study will provide scientific evidence for the utility of testing and comparing weekly and daily dosing regimens in clinical trials. We employed the adenocarcinoma (AD) and squamous cell carcinoma (SCC) models to compare the efficacy of Gefitinib in daily or weekly dosing regimens. We also assessed the effectiveness of Gefitinib in altering growth of the H3255 xenograft. Bioluminescent imaging (BLI) and tumor size was evaluated. Relative expression of phospho-EGFR, phospho-ERK and phospho-AKT in the xenograft were evaluated by Western Blot analysis. In the lung AD model, Gefitinib showed significant inhibition of tumor load when treated with weekly or weekly intermittent dosing regimens in AJ/p53 val135/wt mice whereas a daily dosing regimen did not decrease the tumor load significantly. In the H3255-Luciferase xenograft model, weekly treatment demonstrated better inhibition than daily treatment. The weekly dosing regimen exhibited greater inhibition of phospho-EGFR, phospho-ERK and phospho-AKT than the daily dosing regimen, which may be correlated with the antitumor effects of the different dosing regimens. Weekly dosing with Gefitinib had similar or better efficacy than the daily dosing regimen in pre-clinical models of NSCLC. The data provide scientific evidences for the utility of testing and comparing weekly and intermittent dosing regimens in clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...