Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
NPJ Biofilms Microbiomes ; 10(1): 40, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605016

ABSTRACT

Increasing evidence infers that some complex diseases are attributed to co-infection with multiple pathogens, such as shrimp white feces syndrome (WFS); however, there is a lack of experimental evidence to validate such causal link. This deficiency further impedes rational design of probiotics to elicit desired benefits to shrimp WFS resistance. Herein, we validated the causal roles of Vibrio fluvialis, V. coralliilyticus and V. tubiashii (in a ratio of 7:2:1) in shrimp WFS etiology, which fully satisfied Koch's postulates. Correspondingly, we precisely designed four antagonistic strains: Ruegeria lacuscaerulensis, Nioella nitratireducens, Bacillus subtilis and Streptomyces euryhalinus in a ratio of 4:3:2:1, which efficiently guarded against WFS. Dietary supplementation of the probiotics stimulated beneficial gut populations, streptomycin, short chain fatty acids, taurine metabolism potentials, network stability, tight junction, and host selection, while reducing turnover rate and average variation degree of gut microbiota, thereby facilitating ecological and mechanical barriers against pathogens. Additionally, shrimp immune pathways, such as Fcγ R-mediated phagocytosis, Toll-like receptor and RIG-I-like receptor signaling pathways conferring immune barrier, were activated by probiotics supplementation. Collectively, we establish an updated framework for precisely validating co-infection with multiple pathogens and rationally designing antagonistic probiotics. Furthermore, our findings uncover the underlying beneficial mechanisms of designed probiotics from the probiotics-gut microbiome-host immunity axis.


Subject(s)
Coinfection , Gastrointestinal Microbiome , Probiotics , Humans , Feces
2.
Future Med Chem ; 16(4): 291-294, 2024 02.
Article in English | MEDLINE | ID: mdl-38275153

ABSTRACT

Tweetable abstract Monotherapy and combination therapy of SHP2 regulator for cancer treatment.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 11
3.
Appl Microbiol Biotechnol ; 107(24): 7489-7500, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37768346

ABSTRACT

Ample evidence shows dysbiosis in the gut microbiota when comparing healthy shrimp with those affected by severe acute hepatopancreatic necrosis disease (AHPND). However, the static comparison used in available studies leads to the uncertainties regarding how and to what extent the gut microbiota responds to the progressive severity of AHPND. In addition, shrimp AHPND is featured by rapid and massive mortality, thus the initiation of AHPND must be diagnosed for preemptive therapy. For these reasons, we explored the ecological assembly of gut microbiota over shrimp AHPND progression. Increasing AHPND severity was associated with linear increase in the copies of pirAB genes, relative abundance of gut Vibrio and potentially pathogenic, and reduction in the gut bacterial diversity, stability, and relative abundance of Bdellovibrio. Negative and significant association between gut Vibrio and Bdellovibrio were noted, indicating that compromised predation exerts a role in AHPND progression. Notably, the extents of departure to the healthy shrimp gut microbiota were positively coupled with the increasing severity of AHPND. After controlling the temporal variation in the gut microbiota as healthy shrimp age, we constructed a diagnosis model that accurately diagnosed the initial, progressed or moribund stages of AHPND, with an overall accuracy of 86.5%. Shrimp AHPND induced more stochastic gut microbiotas as a consequence of the attenuated ability of diseased shrimp to select their commensals, resulting in convergent bacterial communities between gut and rearing water over AHPND progression. Collectively, our findings provide important step toward the ecological assembly of gut microbiota implicating in AHPND etiology and in diagnosing AHPND stages. KEY POINTS: • The departure of shrimp gut microbiota positively linked with AHPND severity. • The diagnosis model accurately diagnosed the stages of AHPND. • Shrimp AHPND induced more stochastic gut microbiota.


Subject(s)
Bdellovibrio , Gastrointestinal Microbiome , Penaeidae , Vibrio parahaemolyticus , Vibrio , Animals , Humans , Hepatopancreas/microbiology , Hepatopancreas/pathology , Disease Progression , Acute Disease , Crustacea/microbiology , Necrosis/pathology , Penaeidae/microbiology , Vibrio parahaemolyticus/genetics
4.
Appl Microbiol Biotechnol ; 107(12): 4093-4107, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37191684

ABSTRACT

Current studies have shown that the taxonomic structures of ecologically important microbial communities are altered by antibiotic exposure, but the resulting effects on functional potentials and subsequent biogeochemical processes are poorly understood. However, this knowledge is indispensable for developing an accurate projection of nutrient dynamics in the future. Using metagenomic analyses, here we explored the responses of taxonomical and functional structures of a sediment microbial community, and their links with key biogeochemical processes to increasing antibiotic pollution from the pristine inlet to the outfall sites along an aquaculture discharge channel. We identified sharply contrasting sedimentary microbial communities and functional traits along increasing antibiotic pollution. Functional structures exhibited steeper distance-decay relationships than taxonomical structures along both the antibiotic distance and physicochemical distance, revealing higher functional sensitivity. Sediment enzyme activities were significantly and positively coupled with the relative abundances of their coding genes, thus the abundances of genes were indicative of functional potentials. The nitrogen cycling pathways were commonly inhibited by antibiotics, but not for the first step of nitrification, which could synergistically mitigate nitrous oxide emission. However, antibiotic pollution stimulated methanogens and inhibited methanotrophs, thereby promoting methane efflux. Furthermore, microbes could adapt to antibiotic pollution through enriched potential of sulfate uptake. Antibiotics indirectly affected taxonomic structures through alterations in network topological features, which in turn affected sediment functional structures and biogeochemical processes. Notably, only 13 antibiotics concentration-discriminatory genes contributed an overall 95.9% accuracy in diagnosing in situ antibiotic concentrations, in which just two indicators were antibiotic resistance genes. Our study comprehensively integrates sediment compositional and functional traits, biotic interactions, and enzymatic activities, thus generating a better understanding about ecological consequences of increasing antibiotics pollution. KEY POINTS: • Contrasting functional traits respond to increasing antibiotic pollution. • Antibiotics pollution stimulates CH4 efflux, while mitigating N2O emission and may drive an adaptive response of enriched sulfate uptake. • Indicator genes contribute 95.9% accuracy in diagnosing antibiotic concentrations.


Subject(s)
Anti-Bacterial Agents , Microbiota , Anti-Bacterial Agents/pharmacology , Environmental Pollution , Nitrification , Sulfates
5.
Article in English | MEDLINE | ID: mdl-37028039

ABSTRACT

Federated learning of deep neural networks has emerged as an evolving paradigm for distributed machine learning, gaining widespread attention due to its ability to update parameters without collecting raw data from users, especially in digital healthcare applications. However, the traditional centralized architecture of federated learning suffers from several problems (e.g., single point of failure, communication bottlenecks, etc.), especially malicious servers inferring gradients and causing gradient leakage. To tackle the above issues, we propose a robust and privacy-preserving decentralized deep federated learning (RPDFL) training scheme. Specifically, we design a novel ring FL structure and a Ring-Allreduce-based data sharing scheme to improve the communication efficiency in RPDFL training. Furthermore, we improve the process of distributing parameters of the Chinese residual theorem to update the execution process of the threshold secret sharing, supporting healthcare edge to drop out during the training process without causing data leakage, and ensuring the robustness of the RPDFL training under the Ring-Allreduce-based data sharing scheme. Security analysis indicates that RPDFL is provable secure. Experiment results show that RPDFL is significantly superior to standard FL methods in terms of model accuracy and convergence, and is suitable for digital healthcare applications.

6.
Integr Zool ; 18(6): 1041-1055, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36880690

ABSTRACT

The harsh environment in the Tibetan plateau, the highest place in the world, poses thermoregulatory challenges and hypoxic stress to animals. The impacts of plateau environment on animal physiology and reproduction include external factors such as strong ultraviolet radiation and low temperature, and internal factors such as animal metabolites and gut microbiota. However, it remains unclear how plateau pika adapt to high altitudes through the combination of serum metabolites and gut microbiota. To this end, we captured 24 wild plateau pikas at the altitudes of 3400, 3600, or 3800 m a.s.l. in a Tibetan alpine grassland. Using the machine learning algorithms (random forest), we identified five biomarkers of serum metabolites indicative of the altitudes, that is, dihydrotestosterone, homo-l-arginine, alpha-ketoglutaric-acid, serotonin, and threonine, which were related to body weight, reproduction, and energy metabolism of pika. Those metabolic biomarkers were positively correlated with Lachnospiraceae_ Agathobacter, Ruminococcaceae, or Prevotellaceae_Prevotella, suggesting the close relationship between metabolites and gut microbiota. By identifying the metabolic biomarkers and gut microbiota analysis, we reveal the mechanisms of adaptation to high altitudes in plateau pika.


Subject(s)
Altitude , Lagomorpha , Animals , Ultraviolet Rays , Lagomorpha/physiology , Body Weight , Energy Metabolism
7.
Front Cell Infect Microbiol ; 13: 1123544, 2023.
Article in English | MEDLINE | ID: mdl-36992683

ABSTRACT

Increasing evidence has supported dysbiosis in the faecal microbiome along control-adenoma-carcinoma sequence. In contrast, the data is lacking for in situ tumor bacterial community over colorectal cancer (CRC) progression, resulting in the uncertainties of identifying CRC-associated taxa and diagnosing the sequential CRC stages. Through comprehensive collection of benign polyps (BP, N = 45) and the tumors (N = 50) over the four CRC stages, we explored the dynamics of bacterial communities over CRC progression using amplicons sequencing. Canceration was the primarily factor governing the bacterial community, followed by the CRC stages. Besides confirming known CRC-associated taxa using differential abundance, we identified new CRC driver species based on their keystone features in NetShift, including Porphyromonas endodontalis, Ruminococcus torques and Odoribacter splanchnicus. Tumor environments were less selective for stable core community, resulting in heterogeneity in bacterial communities over CRC progression, as supported by higher average variation degree, lower occupancy and specificity compared with BP. Intriguingly, tumors could recruit beneficial taxa antagonizing CRC-associated pathogens at CRC initiation, a pattern known as "cry-for-help". By distinguishing age- from CRC stage-associated taxa, the top 15 CRC stage-discriminatory taxa contributed an overall 87.4% accuracy in diagnosing BP and each CRC stage, in which no CRC patients were falsely diagnosed as BP. The accuracy of diagnosis model was unbiased by human age and gender. Collectively, our findings provide new CRC-associated taxa and updated interpretations for CRC carcinogenesis from an ecological perspective. Moving beyond stratifying case-control, the CRC-stage discriminatory taxa could add the diagnosis of BP and the four CRC stages, especially the patients with poor pathological feature and un-reproducibility between two observers.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Biomarkers, Tumor , Reproducibility of Results , Colorectal Neoplasms/microbiology , Bacteria/genetics
8.
J Environ Sci (China) ; 124: 429-439, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182151

ABSTRACT

Antibiotic pollution imposes urgent threats to public health and microbial-mediated ecological processes. Existing studies have primarily focused on bacterial responses to antibiotic pollution, but they ignored the microeukaryotic counterpart, though microeukaryotes are functionally important (e.g., predators and saprophytes) in microbial ecology. Herein, we explored how the assembly of sediment microeukaryotes was affected by increasing antibiotic pollution at the inlet (control) and across the outlet sites along a shrimp wastewater discharge channel. The structures of sediment microeukaryotic community were substantially altered by the increasing nutrient and antibiotic pollutions, which were primarily controlled by the direct effects of phosphate and ammonium (-0.645 and 0.507, respectively). In addition, tetracyclines exerted a large effect (0.209), including direct effect (0.326) and indirect effect (-0.117), on the microeukaryotic assembly. On the contrary, the fungal subcommunity was relatively resistant to antibiotic pollution. Segmented analysis depicted nonlinear responses of microeukaryotic genera to the antibiotic pollution gradient, as supported by the significant tipping points. We screened 30 antibiotic concentration-discriminatory taxa of microeukaryotes, which can quantitatively and accurately predict (98.7% accuracy) the in-situ antibiotic concentration. Sediment microeukaryotic (except fungal) community is sensitive to antibiotic pollution, and the identified bioindicators could be used for antibiotic pollution diagnosis.


Subject(s)
Ammonium Compounds , Anti-Bacterial Agents , Environmental Biomarkers , Phosphates , Tetracyclines , Wastewater
9.
10.
Mol Biol Evol ; 39(10)2022 10 07.
Article in English | MEDLINE | ID: mdl-36181435

ABSTRACT

Thermoprofundales, formerly Marine Benthic Group D (MBG-D), is a ubiquitous archaeal lineage found in sedimentary environments worldwide. However, its taxonomic classification, metabolic pathways, and evolutionary history are largely unexplored because of its uncultivability and limited number of sequenced genomes. In this study, phylogenomic analysis and average amino acid identity values of a collection of 146 Thermoprofundales genomes revealed five Thermoprofundales subgroups (A-E) with distinct habitat preferences. Most of the microorganisms from Subgroups B and D were thermophiles inhabiting hydrothermal vents and hot spring sediments, whereas those from Subgroup E were adapted to surface environments where sunlight is available. H2 production may be featured in Thermoprofundales as evidenced by a gene cluster encoding the ancient membrane-bound hydrogenase (MBH) complex. Interestingly, a unique structure separating the MBH gene cluster into two modular units was observed exclusively in the genomes of Subgroup E, which included a peripheral arm encoding the [NiFe] hydrogenase domain and a membrane arm encoding the Na+/H+ antiporter domain. These two modular structures were confirmed to function independently by detecting the H2-evolving activity in vitro and salt tolerance to 0.2 M NaCl in vivo, respectively. The peripheral arm of Subgroup E resembles the proposed common ancestral respiratory complex of modern respiratory systems, which plays a key role in the early evolution of life. In addition, molecular dating analysis revealed that Thermoprofundales is an early emerging archaeal lineage among the extant MBH-containing microorganisms, indicating new insights into the evolution of this ubiquitous archaea lineage.


Subject(s)
Archaea , Hydrogenase , Archaea/genetics , Archaea/metabolism , Hydrogenase/chemistry , Hydrogenase/genetics , Hydrogenase/metabolism , Sodium Chloride/metabolism , Phylogeny , Respiratory System/metabolism , Amino Acids/genetics , Antiporters/genetics , Antiporters/metabolism
11.
Fish Shellfish Immunol ; 127: 758-765, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35835385

ABSTRACT

Shrimp diseases frequently occur during the later farming stages, when the rearing water is eutrophic. This observation provides clue that the virulence of pathogens could be induced by elevated nutrient, whereas the underlying ecological mechanism remains limited. To address this pressing knowledge, we explored how gut microbiota responded to the infection of oligotrophic (OVp) or eutrophic (EVp) pre-cultured Vibrio parahaemolyticus, a causing pathogen of shrimp acute hepatopancreatic necrosis disease (AHPND). Resulted revealed that OVp and EVp infections caused dysbiosis in the gut microbiota and compromised shrimp immunity, while the later infection led to earlier and higher mortality. Significant associations were detected between the gut microbiota and each of the measured immune activities. Neutral community model showed that the assembly of gut microbiota was more strongly governed by deterministic processes in EVp infection, followed by EVp infected and control shrimp. Additionally, there were significantly lower temporal turnover rate and average variation degree in the gut microbiota in EVp infected shrimp compared with control individuals. Notably, we identified 22 infection-discriminatory taxa after ruling out the ontogenic effect. Using profiles of the 22 indicators as independent variables, the diagnosis model accurately distinguished (an overall 85.9% accuracy) the infected status (control, OVp or EVp infected shrimp), with 81.3% accuracy at the initial infection stage. The convergent and deterministic gut microbiota in EVp infected shrimp could partially explain why it is challenge to cure APHND from an ecological viewpoint. In addition, we provided a sensitive approach for diagnosing the onset of infection, when disease symptom is unobservable.


Subject(s)
Gastrointestinal Microbiome , Penaeidae , Vibrio parahaemolyticus , Animals , Nutrients , Penaeidae/microbiology , Vibrio parahaemolyticus/pathogenicity , Virulence
12.
Zool Res ; 43(4): 648-665, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35838035

ABSTRACT

With the rapid development of intensive farming, the aquaculture industry uses a great many antibiotics for the prevention and treatment of bacterial diseases. Despite their therapeutic functions, the overuse and accumulation of antibiotics also pose a threat to aquaculture organisms. In the present study, ayu ( Plecoglossus altivelis) was used as a fish model to study the impacts of ciprofloxacin (CIP) overuse on intestinal homeostasis and immune response during subsequent Pseudomonas plecoglossicida infection. Based on 16S rRNA gene amplification and Illumina sequencing, we found that CIP pre-exposure caused significant variation in intestinal microbiota, including increased species richness, altered microbiota composition and interaction networks, and increased metabolic dysfunction. Furthermore, immunohistochemical analysis indicated that CIP pre-exposure resulted in severe mucosal layer damage, goblet cell reduction, and epithelial cell necrosis of the intestinal barrier in infected ayu. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that disruption of intestinal homeostasis impaired systemic anti-infection immune responses in the intestine, gill, spleen, and head kidney, while inhibiting IL-1ß, TNF-α, and IL-10 expression and promoting TGF-ß expression. Our findings indicated that CIP administration can directly affect intestinal microbiota composition and intestinal integrity in ayu fish. This perturbation of intestinal homeostasis is likely responsible for the lower survival rate of hosts following subsequent infection as the capacity to mount an effective immune response is compromised. This study also provides preliminary clues for understanding the effects of antibiotic overuse on higher vertebrates through trophic transfer.


Subject(s)
Fish Diseases , Osmeriformes , Animals , Anti-Bacterial Agents , Ciprofloxacin/metabolism , Homeostasis , Intestines , Pseudomonas , RNA, Ribosomal, 16S/genetics
13.
Environ Microbiol ; 24(9): 3924-3938, 2022 09.
Article in English | MEDLINE | ID: mdl-35466526

ABSTRACT

Intensive case study has established dysbiosis in the gut microbiota-shrimp disease relationship; however, variability in experimental design and the diversity of diseases arise the question of whether some gut indicators are robust and universal in response to shrimp health status, irrespective of causal agents. Through an unbiased subject-level meta-analysis framework, we re-analysed 10 studies, including 261 samples, four lifestages and six different diseases (the causal agents are virus, bacterial, eukaryotic pathogens, or unknown). Results showed that shrimp diseases reproducibly altered the structure of gut bacterial community, but not diversity. After ruling out the lifestage- and disease specific- discriminatory taxa (different diseases dependent indicators), we identify 18 common disease-discriminatory taxa (indicative of health status, irrespective of causal agents) that accurately diagnosed (90.0% accuracy) shrimp health status, regardless of different diseases. These optimizations substantially improved the performance (62.6% vs. 90.0%) diagnosing model. The robustness and universality of model were validated for effectiveness via leave-one-dataset-out validation and independent cohorts. Interspecies interaction and stability of the gut microbiotas were consistently compromised in diseased shrimp compared with corresponding healthy cohorts, while stochasticity and beta-dispersion exhibited the opposite trend. Collectively, our findings exemplify the utility of microbiome meta-analyses in identifying robust and reproducible features for quantitatively diagnosing disease incidence, and the downstream consequences for shrimp pathogenesis from an ecological prospective.


Subject(s)
Gastrointestinal Microbiome , Animals , Bacteria/genetics , Crustacea/microbiology , Dysbiosis , Gastrointestinal Microbiome/physiology , Prospective Studies
14.
J Hazard Mater ; 434: 128885, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35421673

ABSTRACT

Antibiotic pollution poses serious threats to public health and ecological processes. However, systematic research regarding the interactive effects of increasing nutrient and antibiotic pollutions on the prokaryotic community, particularly taxa that contribute to greenhouse gas emissions, is lacking. By exploring the complex interactions that occur between interkingdom bacteria and archaea, biotic and abiotic factors, the responses of sediment prokaryotic assembly were determined along a significant antibiotic pollution gradient. Bacterial and archaeal communities were primarily governed by sediment antibiotic pollution, ammonia, phosphate, and redox potential, which further affected enzyme activities. The two communities nonlinearly responded to increasing antibiotic pollution, with significant tipping points of 3.906 and 0.979 mg/kg antibiotics, respectively. The combined antibiotic concentration-discriminatory taxa of bacteria and archaea accurately (98.0% accuracy) diagnosed in situ antibiotic concentrations. Co-abundance analysis revealed that the methanogens, methanotrophs, sulfate-reducing bacteria, and novel players synergistically contributed to methane cycling. Antibiotic pollution caused the dominant role of ammonia-oxidizing archaea in ammonia oxidation at these alkaline sediments. Collectively, the significant tipping points and bio-indicators afford indexes for regime shift and quantitative diagnosis of antibiotic pollution, respectively. Antibiotic pollution could expedite methane cycling and mitigate nitrous oxide yield, which are previously unrecognized ecological effects. These findings provide new insights into the interactive biological and ecological consequences of increasing nutrient and antibiotic pollutions.


Subject(s)
Ammonia , Methane , Anti-Bacterial Agents , Archaea , Bacteria , Geologic Sediments/microbiology , Oxidation-Reduction , Phylogeny
15.
Mar Biotechnol (NY) ; 23(6): 964-975, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34739620

ABSTRACT

Acute hepatopancreatic necrosis disease (AHPND) is one of the most common and serious diseases in shrimp aquaculture. Relevant works have focused on the gut microbiota-disease relationship when serious AHPND occurs. In contrast, little is known about how the gut microbiota responds to pathogen infection over AHPND progression, whereas this knowledge is fundamental to uncover the etiology of AHPND. Here, we explored the temporal succession of shrimp gut microbiota during Vibrio anguillarum (a causal pathogen of AHPND) challenge. The successful infection of V. anguillarum was confirmed by linearly increased abundance of the pathogen in the shrimp gut over AHPND progression. V. anguillarum infection caused an irreversible disruption in the shrimp gut microbiota, of which infection and hours post infection (hpi) respectively constrained 6.2% and 10.2% of variation in the data. Furthermore, the predicted functional pathways involved in immunity and metabolism significantly decreased, while those facilitating infectious diseases significantly enriched in the infected shrimp. Intriguingly, after ruling out the effect of background changes in gut microbiota, we identified 20 infection-discriminatory taxa that could be served as independent variables for accurately (89.4%) diagnosing V. anguillarum infection, even at the early infection stage, i.e., 24 hpi. Using a consensus network, we identified several Vibrio and Pseudoalteromonas taxa that directly antagonized V. anguillarum, following the Darwin's niche theory. This is one of the few attempts to identify gut bioindicators for diagnosing pathogen infection. In addition, the antagonistic commensals of V. anguillarum might be the candidate probiotics for preventing AHPND.


Subject(s)
Penaeidae , Vibrio Infections , Vibrio parahaemolyticus , Animals , Necrosis , Penaeidae/microbiology , Vibrio , Vibrio Infections/diagnosis , Vibrio Infections/veterinary
16.
Front Microbiol ; 12: 752750, 2021.
Article in English | MEDLINE | ID: mdl-34691004

ABSTRACT

Intensive studies have evaluated abiotic factors in shaping host gut microbiota. In contrast, little is known on how and to what extent abiotic (geochemical variables) and biotic (i.e., surrounding microbes, younger shrimp, and age) factors assemble the gut microbiota over shrimp ontogeny. Considering the functional importance of gut microbiota in improving host fitness, this knowledge is fundamental to sustain a desirable gut microbiota for a healthy aquaculture. Here, we characterized the successional rules of both the shrimp gut and rearing water bacterial communities over the entire shrimp farming. Both the gut and rearing water bacterial communities exhibited the time decay of similarity relationship, with significantly lower temporal turnover rate for the gut microbiota, which were primarily governed by shrimp age (days postlarval inoculation) and water pH. Gut commensals were primary sourced (averaged 60.3%) from their younger host, rather than surrounding bacterioplankton (19.1%). A structural equation model revealed that water salinity, pH, total phosphorus, and dissolve oxygen directly governed bacterioplankton communities but not for the gut microbiota. In addition, shrimp gut microbiota did not simply mirror the rearing bacterioplankton communities. The gut microbiota tended to be governed by variable selection over shrimp ontogeny, while the rearing bacterioplankton community was shaped by homogeneous selection. However, the determinism of rare and stochasticity of abundant subcommunities were consistent between shrimp gut and rearing water. These findings highlight the importance of independently interpreting host-associated and free-living communities, as well as their rare and abundant subcommunities for a comprehensive understanding of the ecological processes that govern microbial successions.

17.
Sci Total Environ ; 794: 148760, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34323773

ABSTRACT

Aquaculture ecosystem has become a hotspot of antibiotics resistance genes (ARGs) dissemination, owing to the abuse of prophylactic antibiotics. However, it is still unclear how and to what extent ARGs respond to the increasing antibiotic pollution, a trend as expected and as has occurred. Herein, a significant sediment antibiotic pollution gradient was detected along a drainage ditch after decades of shrimp aquaculture. The increasing antibiotic pollution evidently promoted the diversities and tailored the community structures of ARGs, mobile genetic elements (MGEs), virulence factors and pathogens. The profiles of ARGs and MGEs were directly altered by the concentrations of terramycin and sulphadimidine. By contrast, virulence factors were primarily affected by nutrient variables in sediment. The pathogens potentially hosted diverse virulence factors and ARGs. More than half of the detected ARGs subtypes non-linearly responded to increasing antibiotic pollution, as supported by significant tipping points. However, we screened seven antibiotic concentration discriminatory ARGs that could serve as independent variable for quantitatively diagnosing total antibiotic concentration. Co-occurrence analysis depicted that notorious aquaculture pathogens of Vibrio harveyi and V. parahaemolyticus potentially hosted ARGs that confer resistance to multiple antibiotics, while priority pathogens for humankind, e.g., Helicobacter pylori and Staphylococcus aureus, could have harbored redundant virulence factors. Collectively, the significant tipping points and antibiotic concentration-discriminatory ARGs may translate into warning index and diagnostic approach for diagnosing antibiotic pollution. Our findings provided novel insights into the interplay among ARGs, MGEs, pathogens, virulence factors and geochemical variables under the scenario of increasing antibiotic pollution.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Ecosystem , Vibrio , Virulence Factors/genetics
18.
Int J Syst Evol Microbiol ; 70(10): 5488-5496, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32886593

ABSTRACT

A novel Gram-stain-negative, non-motile, strictly aerobic, rod-shaped bacterium was isolated from deep-sea hydrothermal sulfide in the northwest Indian Ocean Ridge and designated as strain IOP_32T. Strain IOP_32T could grow at 4-40 °C (optimum, 37 °C), pH 5-9 (optimum, pH 7-8) and salinity of 0-12 % NaCl (w/v; optimum, 2-3 %). The 16S rRNA gene sequence of strain IOP_32T is most similar to Bizionia fulviae EM7T, Bizionia berychis RA3-3-1T, Bizionia paragorgiae KMM 6029T and Oceanihabitans sediminis S9_10T with 95.5-95.3 % similarity. The phylogenomic analysis indicated that strain IOP_32T forms a distinct lineage with Flaviramulus ichthyoenteri Th78T within the family Flavobacteriaceae. The average nucleotide identity, average amino acid identity and percentage of conserved protein values between strain IOP_32T and the type strains of close genera were 72.3-78.5 %, 67.4-76.9 % and 56.3-61.6 %, respectively. The major cellular fatty acid was anteiso-C15 : 0. The respiratory quinone was MK-6. The polar lipids were mainly composed of phosphatidylethanolamine, an unidentified aminophospholipid and five unidentified polar lipids. Strain IOP_32T is significantly different from related genera, which is reflected by the wide adaptability to temperature and salinity levels, the composition of phospholipids and fatty acids, and the results of phylogenetic analyses. The phenotypic properties and phylogenetic data suggest that the lineage represents a novel genus and species within the family Flavobacteriaceae, for which the name Wocania indica gen. sp. nov. is proposed, with the type strain IOP_32T (=MCCC 1A14017 T=KCTC 62660 T). We also propose the reclassification of Flaviramulus ichthyoenteri as Wocania ichthyoenteri comb. nov. (Th78T=DSM 26285T=JCM 18634T=KCTC 32142T).


Subject(s)
Flavobacteriaceae/classification , Hydrothermal Vents/microbiology , Phylogeny , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Flavobacteriaceae/isolation & purification , Indian Ocean , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
19.
Environ Int ; 144: 106068, 2020 11.
Article in English | MEDLINE | ID: mdl-32871382

ABSTRACT

Atmospheric CO2 concentration is increasing, largely due to anthropogenic activities. Previous studies of individual free-air CO2 enrichment (FACE) experimental sites have shown significant impacts of elevated CO2 (eCO2) on soil microbial communities; however, no common microbial response patterns have yet emerged, challenging our ability to predict ecosystem functioning and sustainability in the future eCO2 environment. Here we analyzed 66 soil microbial communities from five FACE sites, and showed common microbial response patterns to eCO2, especially for key functional genes involved in carbon and nitrogen fixation (e.g., pcc/acc for carbon fixation, nifH for nitrogen fixation), carbon decomposition (e.g., amyA and pulA for labile carbon decomposition, mnp and lcc for recalcitrant carbon decomposition), and greenhouse gas emissions (e.g., mcrA for methane production, norB for nitrous oxide production) across five FACE sites. Also, the relative abundance of those key genes was generally increased and directionally associated with increased biomass, soil carbon decomposition, and soil moisture. In addition, a further literature survey of more disparate FACE experimental sites indicated increased biomass, soil carbon decay, nitrogen fixation, methane and nitrous oxide emissions, plant and soil carbon and nitrogen under eCO2. A conceptual framework was developed to link commonly responsive functional genes with ecosystem processes, such as pcc/acc vs. soil carbon storage, amyA/pulA/mnp/lcc vs. soil carbon decomposition, and nifH vs. nitrogen availability, suggesting that such common responses of microbial functional genes may have the potential to predict ecosystem functioning and sustainability in the future eCO2 environment.


Subject(s)
Carbon Dioxide , Ecosystem , Biomass , Carbon Dioxide/analysis , Nitrogen , Soil , Soil Microbiology
20.
Appl Microbiol Biotechnol ; 104(15): 6813-6824, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32514755

ABSTRACT

A deteriorated water quality is closely associated with disease outbreaks in aquaculture, where microorganisms play indispensable roles in improving water quality and aquatic animals' health. Mangrove is known to be a natural water quality filter and microbiological buffer of pathogen and prebiotics. However, it is unclear how and to what extent Rhizophora apiculata plantation is of benefits to the gut microbiota and growth over mud crab (Scylla paramamosain) aging. To address these concerns, we explored the bacterial communities in mud crab gut and rearing water at 45, 114, and 132 days after incubation, roughly corresponding to juvenile, pre-adult, and adult stages of mud crab. Results showed that 1-year R. apiculata plantation slightly increased the body weight of mud crab and improved water quality to a certain extent. Both bacterioplankton and gut bacterial communities were highly temporal dynamic, while the two communities were significantly distinct (ANOSIM r = 0.90, P = 0.0001). Relative abundances of dominant taxa in water and gut significantly varied between the plantation and the control conditions over mud crab aging. R. apiculata plantation promoted the stability of gut microbiota, as evidenced by more diverse core species. Furthermore, R. apiculata plantation led to the dominance of Verrucomicrobiae species in water and probiotic Bacteroidetes and Lactobacillales taxa in gut. A structural equation model revealed that water variables directly constrained gut microbiota, which in turn affected the body weight of mud crab (r = 0.52, P < 0.001). In addition, functional pathways facilitating immunity and lipid metabolism significantly increased in mud crab gut under the plantation, while those involved in infectious diseases exhibited the opposing trend. These findings greatly expand our understanding of the R. apiculata plantation effects on water quality, gut microbiota, and growth feature of mud crab. Overall, R. apiculata plantation is beneficial for mud crab growth and health. KEY POINTS: • A short-term R. apiculata plantation could potentially improve water quality. • Bacterioplankton is more sensitive than mud crab gut microbiota in response to R. apiculata plantation. • R. apiculata plantation enhances mud crab resistance against pathogen invasion. • R. apiculata plantation alters mud crab gut microbiota, which in turn promotes their body weight.


Subject(s)
Aquaculture/methods , Brachyura/growth & development , Gastrointestinal Microbiome , Rhizophoraceae , Water Quality , Animals , Bacteria/classification , Brachyura/microbiology , Life Cycle Stages , Ponds , Probiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...