Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Huan Jing Ke Xue ; 45(2): 768-779, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471916

ABSTRACT

Relationships between land use and water quality of rivers and lakes vary spatially and temporally. These variations were analyzed using spatial analysis and mathematical statistical methods for the Suzhou Creek in Shanghai. Based on the data of water quality and land use in 2001, 2005, 2010, 2015, and 2020, five spatial scales (200, 500, 1 000, 2 000, and 5 000 m reach buffer) of the landscape pattern were extracted using correlation and redundancy analysis to explore the impact of land use composition and spatial pattern on water quality at different spatial and temporal scales. The results showed that: ① the water quality of Suzhou Creek has gradually improved in the past 20 years; other indicators were between Class II to Class IV in 2020 except TN, and TN was the main pollutant. ② The main land use type of the buffer zone was construction land, and the proportion of greenland and woodland showed a small growth trend. ③ The water quality was closely related to landscape pattern, showing temporal and spatial scale effects. On the time scale, indicators such as construction land, agricultural land, landscape dominance, aggregation, and diversity had significant correlations with various water quality parameters, and there was an inverse correlation in 2010 compared with that in other years for NH4+-N, TP, and TN. The landscape pattern in 2001 had the greatest explanation for water quality, with an explanation rate of 93.65%. The impact of greenland and woodland on water quality has begun to emerge in the past 10 years. ④ On the spatial scale, there were significant correlations between greenland and woodland, patch number, landscape shape index, diversity index, and water quality. There was a strong positive regulatory effect of greenland and woodland on NH4+-N, TP, and TN at the scale of 2 000 m. The patch number and landscape shape index had relatively strong regulatory effects on water quality on a larger spatial scale, whereas the Shannon diversity index had a better positive regulatory effect on water quality on a small scale. The landscape pattern within a buffer of 2 000 m had the highest interpretation degree for all factors, with an explanation rate of 68.47%. The study showed that rationally planning the proportion of greenland and woodland within the 2 000 m buffer zone and optimizing its landscape configuration is an important measure to purify the surface water quality of Suzhou Creek.

2.
Sci Total Environ ; 901: 165847, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37527707

ABSTRACT

Frequent waterlogging occurs in old high-density urban areas where the sewage is inappropriately connected to storm drainages, resulting in serious wet weather discharge pollution (WWDP). To address urban waterlogging and runoff, the optimization of green infrastructures (GIs) and grey infrastructures (GRs) has been proposed to improve rainwater management efficiency. However, most strategies neglect WWDP and fail to achieve integrated control of runoff, waterlogging, and discharge pollution. In the present study, a new optimization method was introduced to identify optimal solutions for renovating outdated storm drainage systems, considering the management of discharge pollution in wet weather. A case study in Shanghai, China was conducted to demonstrate the application of the method. The cost-benefit index (CBI) of optimized GIs (0.06) was lower than that of optimized GRs (2.78) under 22.2 mm rainfall (no runoff and WWDP), but the costs of the former were only half those of the latter. In a 5-year return period storm (no waterlogging), optimized GIs had a significantly higher CBI (2.85 times) compared to optimized GRs, costing only 44 % of the latter. When WWDP reached the control objective (COD≤70 mg/L), the optimized GIs needed to be further optimized with GRs. The CBI of optimized GI-GRs was higher than GRs by 2.50, and the cost was 58% of the latter. In areas with frequent low-intensity rainfall, optimized GIs and GRs should be selected based on local cost or benefit requirements for drainage reconstruction. In high-intensity storm-prone areas, the optimized GI-GR combination should be selected for drainage reconstruction. The proposed method can compensate for the shortcomings of existing optimization methods in controlling WWDP for the reconstruction of old storm drainages.

3.
Entropy (Basel) ; 25(8)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37628267

ABSTRACT

It is generally acknowledged that the stability evaluation of surrounding rock denotes nonlinear complex system engineering. In order to accurately and quantitatively assess the safety states of surrounding rock and provide a scientific basis for the prevention and control of surrounding rock stability, the analysis method of the synergetic theory of information entropy using the failure approach index has been proposed. By means of deriving the general relationship between the total two-dimensional plastic shear strain and the total three-dimensional plastic shear strain and obtaining the numerical limit analysis step of the plastic shear strain, the threshold value of the ultimate plastic shear strain can be determined, which has provided the key criterion for the calculation of the information entropy based on the failure approach index. In addition, combining with the synergetic theory of the principle of maximum information entropy, the evolution equation of the excavation step and information entropy based on the failure approach index of the surrounding rock system in underground mining space are established, and the equations of the general solution and particular solution as well as the expression of the destabilizing excavation step are given. To account for this, the method is applied to analyze the failure states of the floor surrounding rock after the mining of the 71 coal seam in Xutuan Coal Mine and involve the disturbance effect and stability control method of the underlying 72 coal seam roof from the macroscopic and microscopic aspects. Consequently, the validity of the analysis method of synergetic theory of information entropy based on the failure approach index has been verified, which presents an updated approach for the stability evaluation of surrounding rock systems that is of satisfactory capability and value in engineering applications.

4.
Huan Jing Ke Xue ; 44(7): 3892-3901, 2023 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-37438288

ABSTRACT

In order to investigate the composition and diversity of groundwater bacterial communities in typical industrial areas in Shanghai, the Illumina MiSeq high-throughput technology was adopted to explore the correlation and response mechanism of groundwater bacterial communities and environmental factors in typical industries, combined with the analysis of groundwater tri-nitrogen, heavy metals, organic matter, and other indicators. The results showed that the ammonia nitrogen in the groundwater of the petrochemical industry was 64.49%, 32.46%, and 113.91% higher than that of the textile industry, metal products industry, and other industries (P<0.05), respectively. The main detectable indicators of organic matter were total petroleum hydrocarbons (TPH) and volatile phenol. The mass concentration of volatile phenol in groundwater of the petrochemical industry was significantly higher than that of the textile industry, metal products industry, and other industries (P<0.05). The mass concentration of arsenic in the metal products industry was 49.26% and 50.59% higher than that in the petrochemical industry and other industries (P<0.05), respectively. Chloride, manganese, sulfate, etc., were significantly different in different industries (P<0.05). The Shannon index of groundwater in the textile industry was the highest at 3.14, whereas the Shannon index and Ace index of the groundwater in the metal products industry were as low as at 2.42 and 960.46, respectively. The dominant bacterial phylum in groundwater in the industrial area was Proteobacteria, accounting for 80.05%-86.18%. Arsenic, mercury, TPH, etc. were the main influencing factors in groundwater in industrial areas, whereas the nitrifying bacteria, denitrifying bacteria, and organic matter-degrading bacteria were mostly related to groundwater environmental factors. The results of this study can provide theoretical support for groundwater pollution risk management and microbial remediation in petrochemical and metal product industrial areas.


Subject(s)
Arsenic , Groundwater , Petroleum , China , Bacteria/genetics , Nitrogen , Phenol , Phenols
5.
BMC Public Health ; 23(1): 697, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37059973

ABSTRACT

AIMS: This study aims to analyze the association between combustible/electronic cigarettes and the risk of stroke. METHODS: We obtained data from the 2017-2018 National Health and Nutrition Examination Survey (NHANES). The stroke history and combustible/electronic cigarette use were acquired by questionnaires. Considering the sole or dual use of combustible cigarettes and electronic cigarettes (e-cigarettes), we divided all the individuals into four subgroups, including nonsmokers (reference group), sole combustible cigarette, sole e-cigarette, and dual use of both combustible cigarettes and e-cigarettes. We performed multivariable logistic regression to determine the association between cigarette use with the prevalence of stroke. We used odds ratios (ORs) with 95% confidence intervals (CIs) to show the effect size. Finally, we developed a prediction model to evaluate the risk of stroke for individuals with combustible or electronic cigarette use based on a random forest model. RESULTS: We included a total of 4022 participants in the study. The median age was 55, and 48.3% of the participants were males. When we adjusted for age, gender, education attainment, race, total-to-HDL cholesterol (< 5.9 or ≥ 5.9), diabetes, hypertension, and alcohol consumption, the groups of sole e-cigarette use, sole combustible cigarette use, and dual use of combustible and electronic cigarettes were significantly associated with the prevalence of stroke with ORs (with 95%CI) of 2.07 (1.04-3.81), 2.36 (1.52-3.59), 2.34 (1.44-3.68), respectively. In the testing set, the AUC was 0.74 (95%CI = 0.65-0.84), sensitivity was 0.68, and specificity was 0.75. CONCLUSION: Sole e-cigarettes and dual use of e-cigarettes with combustible cigarettes might increase the risk of stroke.


Subject(s)
Electronic Nicotine Delivery Systems , Stroke , Tobacco Products , Vaping , Male , Humans , Female , Vaping/adverse effects , Vaping/epidemiology , Nutrition Surveys , Stroke/epidemiology
6.
PLoS One ; 17(12): e0279302, 2022.
Article in English | MEDLINE | ID: mdl-36548279

ABSTRACT

In general, the ultimate parameter selection method of the failure approach index theory among the three-dimensional problems in geotechnical engineering is unclear in theory, and the symbol convention of the failure approach index in engineering calculation is contrary to the stipulation of the numerical simulation software. Hence, the values of the ultimate plastic shear strain are difficult to determine. To solve this problem, the criterion of positive tension and negative compression and the sequence of the principal stress σ1 ≤ σ2 ≤ σ3 are defined in this paper, and the expression of Mohr-Coulomb yield approach index id deduced. Under the condition of the principal strain sequence ε1 ≤ ε2 ≤ ε3, the formula of the ultimate shear strain is derived using the method of the ultimate strain analysis so as to obtain the simple expression and calculation method of the ultimate plastic shear strain, which has provided the calculation parameters for the three-dimensional ultimate plastic shear strain in the Mohr-Coulomb strain softening model and improved the failure approach index theory. In the light of the aforementioned theory, the ultimate strains of cubic concrete specimens are analyzed, and the obtained ultimate strain values are found consistent with previous research findings, which verifies the correctness and reliability of the ultimate strain analysis method. In addition, it is applied to the quantitative elastic-plastic failure analysis of the section coal pillar in Hengjin coal industry for determining its reasonable retainment width. Consequently, the research results can be embraced as the theoretical basis for the stability analysis of geotechnical materials and exhibits engineering application potential.


Subject(s)
Plastics , Reproducibility of Results , Computer Simulation , Elasticity , Stress, Mechanical
7.
Free Radic Biol Med ; 190: 216-225, 2022 09.
Article in English | MEDLINE | ID: mdl-35970250

ABSTRACT

Iron accumulates in the brain with age and catalyzes free radical damage to neurons, thus playing a pathogenic role in Alzheimer's disease (AD). To decrease the incidence of AD, we synthesized the iron-affinitive peptide 5YHEDA to scavenge the excess iron in the senile brain. However, the blood-brain barrier (BBB) blocks the entrance of macromolecules into the brain, thus decreasing the therapeutic effects. To facilitate the entrance of the 5YHEDA peptide, we linked the low-density lipoprotein receptor (LDLR)-binding segment of ApoB-100 to 5YHEDA (named "bs-YHEDA"). The results of intravenous injections of bs-5YHEDA into senescent mice demonstrated that bs-YHEDA entered the brain, increased ferriportin levels, reduced iron and free radical levels, decreased the consequences of neuronal necrosis and ameliorated cognitive disfunction without kidney or liver damage. bs-5YHEDA is a safe iron and free radical remover that potentially alleviates aging and Alzheimer's disease.


Subject(s)
Alzheimer Disease , Aging , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Free Radicals , Intelligence , Iron/therapeutic use , Mice , Peptides
8.
Comput Math Methods Med ; 2022: 6282167, 2022.
Article in English | MEDLINE | ID: mdl-35633920

ABSTRACT

Background: Neuroinflammation is related with the inflammatory stress of brain tissue induced by the activation of microglial in the central nervous system (CNS), which is still an intractable disease for modern clinical system. Chlorogenic acid has multiple biological activities such as antivirus and anti-inflammation, while few researches have revealed its therapeutic functions in neuroinflammation. Methods: BV2 cells were treated with lipopolysaccharide (LPS) to establish neuroinflammation cell models, and the effects and mechanism of chlorogenic acid in improving the inflammatory progression were investigated. In brief, the toxicity of chlorogenic acid on BV2 cells was detected with MTT assay. The levels of the inflammatory factors including TNF-α, IL-6, IL-1ß, and IFN-α were measured with ELISA, and the abundances of TLR4, MyD88, TRIF, and NF-κB were observed by qRT-PCR and western blot. Results: Chlorogenic acid did not exhibit obvious toxic and side effects on BV2 cells. The levels of TNF-α, IL-6, IL-1ß, and IFN-α were observably upregulated in BV2 cells after treating with LPS. Chlorogenic acid significantly reduced the levels of TNF-α, IL-6, IL-1ß, and IFN-α. Moreover, the abundances of TLR4, MyD88, TRIF, and NF-κB were increased in LPS-induced BV2 cells, while chlorogenic acid could obviously reduce their expressions. Conclusion: This study suggests that chlorogenic acid can improve the inflammatory stress of LPS-induced BV2 cell via interacting with the TLR4-mediated downstream pathway, which is a potential drug for neuroinflammation treatment.


Subject(s)
Lipopolysaccharides , NF-kappa B , Adaptor Proteins, Vesicular Transport/metabolism , Chlorogenic Acid/pharmacology , Humans , Interleukin-6/genetics , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
Epigenetics ; 17(10): 1180-1194, 2022 10.
Article in English | MEDLINE | ID: mdl-34689714

ABSTRACT

Aberrant DNA methylation is an epigenetic hallmark of malignant tumours. The DNA methylation level is regulated by not only DNA methyltransferases (DNMTs) but also Ten-Eleven Translocation (TET) family proteins. However, the exact role of TET genes in breast cancer remains controversial. Here, we uncover that the ERα-positive breast cancer patients with high TET2 mRNA expression had better overall survival rates. Consistently, knockout of TET2 promotes the tumorigenesis of ERα-positive MCF7 breast cancer cells. Mechanistically, TET2 loss leads to aberrant DNA methylation (gain of 5mC) at a large proportion of enhancers, accompanied by significant reduction in H3K4me1 and H3K27ac enrichment. By analysing the epigenetically reprogrammed enhancers, we identify oestrogen responsive element (ERE) as one of the enriched motifs of transcriptional factors. Importantly, TET2 loss impairs 17beta-oestradiol (E2)-induced transcription of the epigenetically reprogrammed EREs-associated genes through attenuating the binding of ERα. Taken together, these findings shed light on our understanding of the epigenetic mechanisms underlying the enhancer reprogramming during breast cancer pathogenesis.


Subject(s)
Breast Neoplasms , Dioxygenases , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA/metabolism , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/metabolism , Enhancer Elements, Genetic , Epigenesis, Genetic , Estradiol , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens , Female , Humans , Methyltransferases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Messenger/metabolism
10.
Biochem Biophys Res Commun ; 589: 240-246, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34929447

ABSTRACT

Estrogen signaling plays important roles in diverse physiological and pathophysiological processes. However, the relationship between estrogen signaling and epigenetic regulation is not fully understood. Here, we explored the effect of estrogen signaling on the expression of Ten-Eleven Translocation (TET) family genes and DNA hydroxylmethylation in estrogen receptor alpha positive (ERα+) breast cancer cells. By analyzing the RNA-seq data, we identified TET2 as an estradiol (E2)-responsive gene in ERα+ MCF7 cells. RT-qPCR and Western blot analyses confirmed that both the mRNA and protein levels of TET2 gene were upregulated in MCF7 cells by E2 treatment. ChIP-seq and qPCR analyses showed that the enrichment of ERα and H3K27ac on the upstream regulatory regions of TET2 gene was increased in MCF7 cells upon E2 treatment. Moreover, E2 treatment also led to a significant increase in the global 5-hydroxymethylcytosine (5hmC) level, while knockout of TET2 abolished such E2-induced 5hmC increase. Conversely, treatment with ICI 182780, a potent and selective estrogen receptor degrader (SERD), inhibited TET2 gene expression and down-regulated the 5hmC level in MCF7 cells. Taken together, our study identified an ERα/TET2/5hmC epigenetic pathway, which may participate in the estrogen-associated physiological and pathophysiological processes.


Subject(s)
5-Methylcytosine/metabolism , Breast Neoplasms/genetics , DNA-Binding Proteins/genetics , Dioxygenases/genetics , Estrogens/metabolism , Gene Expression Regulation, Neoplastic , Signal Transduction , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Dioxygenases/metabolism , Down-Regulation/drug effects , Down-Regulation/genetics , Enhancer Elements, Genetic/genetics , Estradiol/pharmacology , Estrogen Receptor alpha/metabolism , Female , Fulvestrant/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Oxidation-Reduction , Protein Binding/drug effects , Signal Transduction/drug effects , Transcription, Genetic/drug effects
11.
Small ; 18(2): e2105217, 2022 01.
Article in English | MEDLINE | ID: mdl-34796651

ABSTRACT

Boosting the replacement of traditional NH3 production (Haber-Bosch process) with photocatalytic technology is of great importance for energy and environment remediation. Herein, to develop a photocatalyst with efficient charge separation and abundant reactive sites for photocatalytic N2 fixation, a biomass-induced diphase-carbon doping strategy is proposed by adding lotus root starch which can be environmentally produced into the preparation of carbon nitride (CN). The adjustment to the CN framework by planar-fused carbon optimizes the band alignment of the catalyst, improving its response to sunlight. In particular, the in-plane-fused carbon in collaboration with the physically piled carbon initiates unique dual electron transfer pathways from different dimensions. The diphasic carbons can both function as qualified reactive sites according to the experimental explorations and further theoretical calculations, which effectively regulate the electron transfer and energy barrier associated with the N2 reduction on catalyst. The bio-carbon-doped catalyst exhibits drastically enhanced photocatalytic N2 fixation performance, and the NH3 yield on the optimized DC-CN0.1 reaches 167.35 µmol g-1 h-1 , which is fivefold of g-C3 N4 and stands far out from the single-phase doped systems. These explorations expand the metal-free skeleton engineering toolbox and provide new guidance for the solar energy utilizations.


Subject(s)
Carbon , Nitriles , Biomass , Electronics , Nitriles/chemistry
12.
Front Chem ; 9: 638216, 2021.
Article in English | MEDLINE | ID: mdl-34307294

ABSTRACT

Inorganic nitride nanomaterials have attracted widespread attention for applications in renewable energy due to novel electrochemical activities and high chemical stabilities. For different renewable energy applications, there are many possibilities and uncertainties about the optimal nitride phases and nanostructures, which further promotes the exploration of controllable preparation of nitride nanomaterials. Moreover, unlike conventional nitrides with bulk or ceramic structures, the synthesis of nitride nanomaterials needs more accurate control to guarantee the target nanostructure along with the phase purity, which make the whole synthesis still a challenge to achieve. In this mini review, we mainly summarize the synthesis methods for inorganic nitride nanomaterials, including chemistry vapor deposition, self-propagation high-temperature synthesis, solid state metathesis reactions, solvothermal synthesis, etc. From the perspective of nanostructure, several novel nitrides, with nanostructures like nanoporous, two-dimensional, defects, ternary structures, and quantum dots, are showing unique properties and getting extensive attentions, recently. Prospects of future research in design and synthesis of functional inorganic nitrides are also discussed.

13.
Environ Sci Pollut Res Int ; 27(11): 12781-12791, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32008197

ABSTRACT

The commonly employed design of detention tanks cannot effectively control overflow pollution because of non-stormwater entry and sewer sediments in the urban drainage system. Herein, a multi-source overflow model considering both overflow water quality and quantity has been developed for simulating real overflow events. Subcatchment and drainage information is extracted through geographic information system (ArcGIS) and a multi-source overflow model is developed in Stormwater Management Model (SWMM) by coupling runoff mode, non-stormwater mode, and sediment mode. This model is successfully calibrated and validated with the reasonable root-mean-square error (RMSE) of 8.2 and 5.8% for water quality and quantity, respectively. The simulated results suggest that the misconnected non-stormwater entry can affect overflow contaminant concentrations over the period of overflow due to its continuous pollution, while sewer sediments mainly exert effects on the peak pollution period of overflow. Based on model prediction, an approach called overflow peak pollution interception (OPPI) is proposed for model application and design optimization. The OPPI designed detention tank is suitable for high non-stormwater entries and long antecedent dry days (large amount of sediment). A case study is conducted in a high-density urban area of Shanghai, and compared with two commonly employed design methods in Germany and China, which have the similar design principle of volume, relying on amount of precipitation multiplying area of region, the combination of overflow model and OPPI approach enables to offer more accurate and effective design of detention tanks for pollution control in urban areas. Graphical abstract .


Subject(s)
Rain , Water Movements , China , Environmental Monitoring , Germany , Motor Vehicles , Water Pollution
14.
Physiol Plant ; 168(3): 709-724, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31381165

ABSTRACT

5-aminolevulinic acid (ALA), a plant growth regulator with great application potential in agriculture and horticulture, induces stomatal opening and inhibits stomatal closure by decreasing guard cell H2 O2 . However, the mechanisms behind ALA-decreased H2 O2 in guard cells are not fully understood. Here, using type 2A protein phosphatase (PP2A) inhibitors, microtubule-stabilizing/disrupting drugs and green fluorescent protein-tagged α-tubulin 6 transgenic Arabidopsis (GFP-TUA6), we find that PP2A and cortical microtubules (MTs) are involved in ALA-regulated stomatal movement. Then, we analyze stomatal responses of Arabidopsis overexpressing C2 catalytic subunit of PP2A (PP2A-C2) and pp2a-c2 mutant to ALA and abscisic acid (ABA) under both light and dark conditions, and show that PP2A-C2 participates in ALA-induced stomatal movement. Furthermore, using pharmacological methods and confocal studies, we reveal that PP2A and MTs function upstream and downstream, respectively, of H2 O2 in guard cell signaling. Finally, we demonstrate the role of H2 O2 -mediated microtubule arrangement in ALA inhibiting ABA-induced stomatal closure. Our findings indicate that MTs regulated by PP2A-mediated H2 O2 decreasing play an important role in ALA guard cell signaling, revealing new insights into stomatal movement regulation.


Subject(s)
Aminolevulinic Acid/pharmacology , Arabidopsis Proteins/physiology , Arabidopsis/physiology , Hydrogen Peroxide/metabolism , Microtubules/physiology , Phosphoprotein Phosphatases/physiology , Plant Stomata/physiology , Abscisic Acid , Plant Stomata/cytology , Signal Transduction
15.
Water Sci Technol ; 79(12): 2395-2406, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31411594

ABSTRACT

Untreated combined sewer overflows (CSOs) cause serious water pollution problems. In this study, the effects of CSO-induced heavy metals and the remediation practice of installation of a long-term water diversion (LTWD) on the microbial environment in river sediments were analyzed in an inland river. The Zn, Cd, Cr, and Cu contents in sediments and water were analyzed. DNA extraction and polymerase chain reaction analysis were conducted based on the Illumina MiSeq platform. The results showed that CSOs have a significant adverse impact on the diversity of microbial populations in river sediments. The LTWD is helpful in improving the richness of microorganisms and the proportion of Gram -ves, but it is challenging to reduce the accumulation of heavy metals in the sediment. The correlation analysis shows a strong relationship between some metabolic pathways and Zn and Cd accumulation in river sediments. Some detoxification compound metabolisms are also promoted at these sites. Thus, chronic exposure to environmental heavy metals from CSOs decreases the river microbial community, and further affects the ecological environment of the river. Therefore, without eliminating CSOs or reducing overflow frequency, it is difficult to alleviate the accumulation of heavy metals in river sediments and improve river ecology via water diversion alone.


Subject(s)
Geologic Sediments/microbiology , Metals, Heavy , Microbiota , Water Pollutants, Chemical , China , Environmental Monitoring , Environmental Restoration and Remediation , Risk Assessment , Rivers , Water , Water Microbiology
16.
Oncol Lett ; 17(6): 5120-5124, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31186725

ABSTRACT

This study aimed to investigate the effect of LncRNA ZEB1-AS1 on the proliferation, invasion and apoptosis of human glioma U87 cells. U87 glioma cells were divided into three groups. The Si group was transfected with LncRNA ZEB1-AS1 specific SiRNA. The NC group was transfected with non-specific scramble siRNA, and untransfected glioma cells were used as the blank group. After 48 h of transfection, the proliferation of U87 cells was detected by MTT assay, apoptosis of U87 cells was detected by flow cytometry, and Transwell invasion assay was used to detect cell invasion. The expression of LncZEB1-AS1 in Si group was significantly lower than that in the NC and blank groups (P<0.01). There was no statistical difference in the OD 490 between the three groups at 24 h (P>0.05). At 48 h, the Si group was significantly lower than the NC group and the blank group (P<0.01). After 48 h, the three groups showed a gradually increasing trend, but at all the time points, the Si group was always lower than the NC and blank groups (P<0.01). The OD values of the blank and NC groups were significantly higher than the same group at the previous time point (P<0.01). The OD values of Si group at 48 and 96 h were significantly higher than those at the previous time point (P <0.05). Although there was an upward trend between 72 and 48 h, the difference was not significant (P>0.05). Flow cytometry detected apoptosis in each group and found that the apoptosis rate in the Si group was significantly higher than that in the NC and blank groups (P<0.01). Inhibition of LncRNA ZEB1-AS1 can inhibit the proliferation and invasion of glioma U87 cells and promote apoptosis. LncRNA ZEB1-AS1 is expected to become a new target for the treatment of glioma.

17.
Environ Monit Assess ; 191(6): 343, 2019 May 04.
Article in English | MEDLINE | ID: mdl-31055667

ABSTRACT

The characteristics of surface runoff and the infiltration properties of urban green land are important to determine the effects of runoff reduction by low-impact development (LID) facilities. In this paper, two typical types of urban green land (lawn and shrub) in Shanghai were selected to study the runoff characteristics under eight rainfall events. The sensitivity of the runoff parameters was analyzed, and then, the optimal parameters were determined using the Stormwater Management Model (SWMM). The results showed that the interception and infiltration capacities of shrub were greater than those of lawn. The rainfall intensity and rainfall pattern were the major factors that influenced the interception and infiltration of rainwater. The threshold value that generates runoff varied across the eight rainfall events ranged from 1.6 to 28.5 mm for lawn and 4.5 to 32.0 mm for shrub. The maximum reduction ratios of runoff and peak flow for shrub were 52 and 57% higher than them for lawn, respectively. The parameters for shrub were more sensitive to runoff and peak flow compared with those for lawn. Under light rainfalls with a short duration, the maximum infiltration rate and depression storage were more sensitive than those under heavy rainfalls with a long duration. Antecedent dry weather period was not found to be a sensitive parameter except for the shrub under light rainfalls. The relative errors of runoff and dynamic mean runoff (60 min) for lawn and shrub were within ± 9.5%. The errors of peak flow ranged between - 21 and 16.6%. The dynamic runoff characteristics and the parameters for lawn and shrub determined in this study can provide references for simulating urban runoff and planning LID areas.


Subject(s)
Computer Simulation , Drainage, Sanitary/methods , Environmental Monitoring/methods , Rain , Water Movements , Calibration , China , Cities , Poaceae/growth & development
18.
Huan Jing Ke Xue ; 40(5): 2240-2248, 2019 May 08.
Article in Chinese | MEDLINE | ID: mdl-31087862

ABSTRACT

Rapid urbanization has driven surface runoff pollution in urban areas to a serious state. In particular, polycyclic aromatic hydrocarbons(PAHs)from road surface runoff has attracted wide attention. Two traffic roads in Shanghai (Caobao Road in an urban central area, and Jiajin Expressway in the suburbs) were identified as research objects. Runoff samples from these two traffic roads were collected for 7 rainfall events between 2007 and 2018. Then, the concentration characteristics and composition ratio of PAHs were analyzed. The differences in pollution sources of runoff PAHs from two types of traffic roads were identified based on characteristic ratio method and positive matrix factorization(PMF). The results showed that the geometric mean value (5539.2 ng·L-1) of 16 PAHs of runoff from Jiajin Expressway in the suburbs was 10 times greater than that from Caobao Road (548.1 ng·L-1), which was related to a higher truck traffic and a lower cleaning frequency on Jiajin Expressway. The benzo(a)pyrene(BaP)concentration on both roads exceeded the national emission standard, and the amount in the Jiajin Expressway was up to 21 times higher than the standard. There was no significant difference in the composition of PAHs of runoff between Caobao Road and Jiading Expressway, and 4-6 ring were dominant and responsible for 80% of total PAHs loads in both sites. Based on the analysis of the characteristic ratio method, the PAHs of runoff from Caobao Road mostly came from coal-fired sources and traffic sources, while that from Jiajin Expressway were mostly from fossil fuels, coal, and other traffic sources. Quantitative source analysis through PMF method showed that the primary sources of PAHs were gas and coal, accounting for 48.6%, followed by traffic emission sources (29.8%), and oil sources (21.7%). The contribution ratios of PAHs sources of runoff from Jiajin Expressway, sorted in descending order, are:traffic emission sources (38.5%), coal-fired sources (34.6%), oil sources (14.6%), and coking sources (12.6%). PAHs sources and contribution rates between urban and suburban roads are completely different. Gas and coal were the main sources of PAHs of runoff from Caobao Road, which was related to the high population density and relatively large gas consumption in the Xuhui District. Traffic emission was the main source of PAHs from surface runoff on Jiajin Expressway, which was related to the massive flow of coaches and trucks, and their higher PAHs emission compared to small cars. In addition, there are still coking sources of PAHs of runoff from Jiajin Expressway, which can be related to the massive industrial coal consumption in the Qingpu District.

19.
Drug Deliv Transl Res ; 9(1): 394-403, 2019 02.
Article in English | MEDLINE | ID: mdl-30136122

ABSTRACT

Alzheimer's disease (AD) is currently incurable and places a large burden on the caregivers of AD patients. In the AD brain, iron is abundant, catalyzing free radicals and impairing neurons. The blood-brain barrier hampers antidementia drug delivery via circulation to the brain, which limits the therapeutic effects of drugs. Here, according to the method described by Gobinda, we synthesized a 16 lysine (K) residue-linked low-density lipoprotein receptor-related protein (LRP)-binding amino acid segment of apolipoprotein E (K16APoE). By mixing this protein with our designed therapeutic peptide HAYED, we successfully transported HAYED into an AD model mouse brain, and the peptide scavenged excess iron and radicals and decreased the necrosis of neurons, thus easing AD.


Subject(s)
Alzheimer Disease/drug therapy , Apolipoproteins E/chemistry , Low Density Lipoprotein Receptor-Related Protein-1/chemistry , Peptides/administration & dosage , Animals , Apolipoproteins E/metabolism , Biological Transport , Blood-Brain Barrier/drug effects , Disease Models, Animal , Humans , Iron/chemistry , Mice , Peptides/chemistry
20.
Sci Total Environ ; 625: 1272-1282, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29996424

ABSTRACT

This study characterized the pollution levels and potential ecological risk of heavy metals in combined sewer overflows (CSOs) and their effects on microbial diversity in nearby riparian sediments. The chemical fractionations of Zn, Cd, Cr, and Cu in dry-weather flows, wet-weather flows (CSO discharges), sewer sediments, and surface runoffs were determined. Geo-accumulation (Igeo) and ecological risk (RI) indexes were employed for metal risk assessment. DNA extraction and polymerase chain reaction (PCR) amplification on the Illumina MiSeq platform were conducted. The results show that heavy metals contents in fine-sized fractions have higher values than those in coarse-sized fractions. Chemical fractionation analysis suggests that Zn and Cd are two of the most bioavailable metals impacted by anthropogenic activities. Cr and Cu contents in CSOs are relatively stable and could exist for extended periods. According to the RI analysis, CSOs pose a considerable risk (RI-G2) to receiving waters due to the higher bioavailability of Cd, which was consistent with the Igeo index. Furthermore, under the stress of the highly-bioavailable Cd and Cu, Gram +ves in the riparian benthic sediment gradually became dominant with metal-tolerance property. Therefore, long-term exposure to highly bioavailable metals could exhibit great impacts on microbial diversity.


Subject(s)
Environmental Monitoring , Metals, Heavy/analysis , Rivers/microbiology , Wastewater/chemistry , Water Microbiology , Water Pollutants, Chemical/analysis , China , Genetic Variation , Rivers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...