Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(27): 35024-35032, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38935758

ABSTRACT

Inorganic metal sulfides have received extensive investigation as anode materials in lithium-ion batteries (LIBs). However, applications of crystalline organic hybrid metal sulfides as anode materials in LIBs are quite rare. In addition, combining the nanoparticles of crystalline organic hybrid metal sulfides with conductive materials is expected to enhance the electrochemical lithium storage performance. Nevertheless, due to the difficulty of harvesting the nanoparticles of crystalline organic hybrid metal sulfides, this approach has never been tried to date. Herein, nanoparticles of a crystalline organic hybrid cadmium antimony sulfide (1,4-DABH2)Cd2Sb2S6 (DCAS) were prepared by a top-down method, including the procedures of solvothermal synthesis, ball milling, and ultrasonic pulverization. Thereafter, the nanoparticles of DCAS with sizes of ∼500 nm were intercalated into graphene oxide nanosheets through a freeze-drying treatment and a DCAS@GO composite was obtained. Compared with the reported Sb2S3- and CdS-based composites, the DCAS@GO composite exhibited superior electrochemical Li+ ion storage performance, including a high capacity of 1075.6 mAh g-1 at 100 mA g-1 and exceptional rate tolerances (646.8 mAh g-1 at 5000 mA g-1). In addition, DCAS@GO can provide a high capacity of 705.6 mAh g-1 after 500 cycles at 1000 mA g-1. Our research offers a viable approach for preparing the nanoparticles of crystalline organic hybrid metal sulfides and proves that intercalating organic hybrid metal sulfide nanoparticles into GO nanosheets can efficiently boost the electrochemical Li+ ion storage performance.

2.
Biochem Genet ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627316

ABSTRACT

In the present study, our aim was to explore the role of MUC4 in IL-4-stimulated conjunctival epithelial cells and the underlying mechanisms. Human recombinant IL-4 was employed in human conjunctival epithelial cells (HConEpic) cells, and MUC4 shRNA (sh-MUC4) was constructed to explore the functional role of MUC4. The protein level of MUC4, O-GlcNAc transferase (OGT), O-GlcNAc hydrolase (OGA), zonula occludens 1 (ZO-1), gap junction protein beta 2 (GJB2), claudin-8 (CLDN8), and E-cadherin were detected by Western blot in HConEpic cells, the interaction between MUC4 and OGT/OGA was assessed by co-immunoprecipitation (IP) and Western blot in 293T cells. Our results showed that IL-4 significantly up-regulated MUC4 and OGT protein levels in HConEpic cells, while down-regulated OGA protein level. Also, IL-4 down-regulated ZO-1, GJB2, CLDN8, and E-cadherin protein levels in HConEpic cells, while which was markedly reversed by sh-MUC4. Additionally, OGT inhibitor significantly reduced MUC4 protein level, and elevated ZO-1, GJB2, CLDN8, and E-cadherin protein levels in HConEpic cells, while OGA inhibitor resulted in the opposite results. Furthermore, in addition to the interaction between OGT/OGA and MUC4, Co-IP and Western blot also revealed the alteration of MUC4 O-GlcNAcylation in 293T cells treated with OGT/OGA inhibitor. Above findings suggested that OGT/OGA inhibitor regulated MUC4 protein level by affecting MUC4 O-GlcNAcylation to regulate ZO-1, GJB2, CLDN8, and E-cadherin protein levels in HConEpic cells, which was achieved via inhibiting the interaction between OGT/OGA and MUC4. This study may provide a better understanding of the pathogenesis of allergic conjunctivitis (AC).

3.
Article in English | MEDLINE | ID: mdl-36317753

ABSTRACT

Carbon-coated metal chalcogenide composites have been demonstrated as one type of promising anode material for sodium-ion batteries (SIBs). However, combining carbon materials with micronanoparticles of metal chalcogenide always involve complicated processes, such as polymer coating, carbonization, and sulfidation/selenization. To address this issue, herein, we reported a series of carbon-coated FexSey@CN (FexSey = FeSe2, Fe3Se4, Fe7Se8) composites prepared via the thermodynamic transformation of a crystalline organic hybrid iron selenide [Fe(phen)2](Se4) (phen = 1,10-phenanthroline). By pyrolyzing the bulk crystals of [Fe(phen)2](Se4) at different temperatures, FexSey microrods were formed in situ, where the nitrogen-doped carbon layers were coated on the surface of the microrods. Moreover, all the as-prepared FexSey@CN composites exhibited excellent sodium-ion storage capabilities as anode materials in SIBs. This work proves that crystalline organic hybrid metal chalcogenides can be used as a novel material system for the in situ formation of carbon-coated metal chalcogenide composites, which could have great potential in the application of electrochemical energy storage.

4.
Huan Jing Ke Xue ; 43(6): 3077-3087, 2022 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-35686777

ABSTRACT

Microplastics as a prevalent pollutant in water bodies have recently attracted widespread attention. To investigate the spatial and temporal distribution characteristics of microplastics in freshwater rivers and their migration patterns, the surface water, sediments, and subsidence zone of the Xiangxi River, a tributary of the Yangtze River, were sampled and analyzed in November 2020 and April 2021, respectively. The results showed that the average abundance of microplastics in the surface water of Xiangxi River was (6.64±1.32) n·L-1 in flat water and (5.00±1.07) n·L-1 in dry water, the average abundance of microplastics in sediments was (0.56±0.13) n·g-1 in flat water and (0.41±0.09) n·g-1 in dry water, and the average abundance of microplastics in the subsidence zone was (0.53±0.15) n·g-1 in flat water and (0.68±0.18) n·g-1in dry water. There were significant differences in the abundance distribution of microplastics in the surface water, sediments, and subsidence zone (P<0.05). In the surface water and sediments, the particle size of microplastics was mainly distributed in the range of 0.1-0.5 mm, and in the subsidence zone, it mainly ranged from 1-5 mm. The color of microplastics was mainly transparent in the surface water and subsidence zone and blue in sediments. The morphology of microplastics in the Xiangxi River basin was mainly fiber, and the materials were mainly polyethylene (PE) and polypropylene (PP). There were many factors affecting the distribution of microplastics. The analysis results showed that the abundance of microplastics in the surface water was negatively correlated with the flow rate of the water body. The abundance of microplastics in the sediment was related to the substrate type of the riverbed and negatively correlated with the substrate particle size. Combined with the microplastic abundance data of each sampling site, it was found that there was a significant migration process of microplastics in the spatial distribution of the Xiangxi River in the watershed. Along the river longitudinal direction, the longitudinal migration of microplastics in the surface water was along the river direction, and in the vertical direction, it showed the mutual migration between the water body and the subsidence zone and the water body and sediments.


Subject(s)
Microplastics , Rivers , Fresh Water , Plastics , Water
5.
ACS Appl Mater Interfaces ; 13(46): 55188-55197, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34757713

ABSTRACT

Rare-earth elements (REEs) in industrial wastewaters have great value for recycling and reuse, but their characteristic of low concentration poses a challenge to an efficient enrichment from wastewaters. In recent years, thiometallates featuring two-dimensional layers have shown great potential in the enrichment of REEs via the ion-exchange process. However, investigations on thiometallates featuring three-dimensional anionic frameworks for the recovery of REEs have not been reported. Herein, K2Sn2S5 (KTS-2), a thiostannate possessing a three-dimensional porous framework, was chosen as an ion-exchange material for capturing REEs from an aqueous solution. Indeed, KTS-2 exhibited excellent ion-exchange performance for all 16 REEs (except Pm). Specifically, KTS-2 displayed a high capture capacity (232.7 ± 7.8 mg/g) and a short equilibrium time (within 10 min) for Yb3+ ions. In addition, KTS-2 had a high distribution coefficient for Yb3+ ions (Kd > 105 mL/g) in the presence of excessive interfering ions. Impressively, KTS-2 could reach removal rates of above 95% for all 16 REEs in a large quantity of wastewater with low initial concentration (∼7 mg/L). Moreover, KTS-2 could be used as an eco-friendly material for ion exchange of REEs, since the released K+ cations would not cause secondary pollution to the water solution.

6.
Inorg Chem ; 60(7): 4337-4341, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33749258

ABSTRACT

Imidazolium-based ionic liquids have been widely applied in the synthesis of organic hybrid chalcogenidometalates, while the other types of ionic liquids are rarely tried. Reported here is the first application of a pyridinium-based ionic liquid in the preparation of two main-group heterometallic selenides featuring isomorphic three-dimensional frameworks. Of particular interest is that three gallium-tin selenides possessing another type of three-dimensional framework have been prepared by replacing the pyridinium-based ionic liquid with imidalolium-based ionic liquids under the same reaction conditions.

7.
Inorg Chem ; 59(4): 2337-2347, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31999443

ABSTRACT

Thiol-amine solvent mixtures have been widely applied in the solution processing of binary chalcogenide thin films due to their excellent ability to dissolve various bulk binary chalcogenides. However, application of this solvent system in preparing new crystalline chalcogenidometalates has not been explored. In this work, by using a thiol-amine solvent mixture of n-butylamine (BA) and 1,2-ethanedithiol (EDT) as the reaction medium and protonated piperazine (pip) cation as the template, we synthesized a series of new chalcogenidoarsenates with structures ranging from discrete clusters to two-dimensional layers, namely, [pipH2][pipH][AsS4] (1), [pipH2][pipH][As(Se0.4S0.6)4] (2), [pipH2]2[pipH]2[In2AsIII2AsV2S13.3(S2)0.7] (3), [pipH2]2[pipH]2[In2AsIII2AsV2S10.2Se3.1(Se2)0.7] (4), [pipH2]0.5[AsS(S2)] (5), [pipH2]0.5[AsS2] (6), [pipH]2[AgAsS4] (7), [pipH2]1.5[GaAsIIIAsVS7] (8), and Cs2[pipH]2[InAs6S12]Cl (9). Particularly, compounds 3, 4, and 8 contain mixed-valent AsIII and AsV ions in their discrete clusters and one-dimensional chain. In addition, compound 5 could thermodynamically transform to compound 6 with increasing reaction temperature, which may be attributed to the thermodynamically unstable S-S species in the chains of 5. The BA-EDT solvent mixture was crucial to the synthesis of these compounds, since no title crystals can be prepared by replacing the BA-EDT solvent mixture with other conventional solvents or removing one component of the BA-EDT solvent mixture from the reaction system. Our research demonstrates that thiol-amine solvent systems could be promising reaction media for growing novel crystalline chalcogenidometalates.

8.
Dalton Trans ; 48(27): 10199-10209, 2019 Jul 21.
Article in English | MEDLINE | ID: mdl-31192327

ABSTRACT

Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal-organic frameworks, namely [NH4][Zn(BTC)(NH3)2]·H2O (1), [Cu(PDC)(NH3)] (2), [Co(H2BTC)2(e-urea)2]·(e-urea)·1/4H2O (3), K0.63(NH4)0.37[Mn(PZDC)] (4), [NH4][Mn(BTC)(H2O)] (5), [CH3NH3][Mn3(HBTC)2(BTC)·3H2O (6), and [Co3(BTC)2(urea)2]·2H2O (7), were synthesized in deep eutectic solvents of choline chloride and urea/e-urea/m-urea (H3BTC = 1,3,5-benzenetricarboxylic acid; H2PDC = 2,6-pyridinedicarboxylic acid; H2PZDC = 3,5-pyrazoledicarboxylic acid; e-urea = ethylene urea; m-urea = N,N-dimethylurea). Of particular interest is the fact that the utilization of different hydrogen bond donors in DES mixtures can lead to the formation of different frameworks. The multiple roles of hydrogen bond donors in the reactions were discussed. Furthermore, compound 7 exhibited catalytic activity for the oxidation of styrene, and thus it can be used as a heterogeneous catalyst due to its good stability. These results promote the understanding of the application of DESs in synthesizing novel transition metal-organic frameworks.

9.
Int J Ophthalmol ; 12(4): 621-626, 2019.
Article in English | MEDLINE | ID: mdl-31024817

ABSTRACT

AIM: To report the visual outcomes and refractive status in premature infants with and without retinopathy of prematurity (ROP) who were or not treated. METHODS: The clinical records of all premature infants with or without ROP and with or without treatment between 2007 and 2017 were retrospectively reviewed. Basic demographic data, serial changes in ROP incidence, treatment and outcomes, and the refractive states were analyzed. Correlations among myopia and astigmatism progression, birth weight, gestational age, and treatment methods were also analyzed. RESULTS: A total of 562 screened premature infants (all Chinese, 1124 eyes), were recruited with a 378:184 male-to-female ratio. Birth weight did not directly influence ROP incidence. The overall ROP incidence was 16.55% (93/562 cases). The incidences in boys and girls were 16.14% (33/378 cases) and 17.39% (32/184 cases), respectively, and this difference was not significant. However, all infants with serious ROP (stage IV and V) were male. Myopia combined with astigmatism was common in premature infants with and without ROP (30.99%, 172/555 cases), and myopic refraction (including myopia and myopia combined with astigmatism) was more common in premature infants with ROP (48.84%, 42/86 cases). In the >8.00 diopter group, there were significantly more ROP infants than without ROP. Myopic refraction (including myopia and myopia combined with astigmatism) was most common in infants with ROP after treatment (63.63%, 7/11 cases). CONCLUSION: The refractive state is different between premature infants and mature infants. Those treated for ROP had a higher chance of developing myopia, astigmatism, and higher diopter.

10.
Analyst ; 144(9): 3103-3110, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30920573

ABSTRACT

Receptor-targeted delivery systems have been proposed as means of concentrating therapeutic agents to improve therapeutic effects on disease sites and reduce side effects on normal issues. Herein, we synthesized biocompatible folic acid (FA)-functionalized DHE-modified TiP (TiP-PAH-DHE-FA) nanoparticles as a drug delivery system that possessed high drug loading capability and enhanced folate-receptor-mediated cellular uptake. Moreover, it also allowed drug effect evaluation based on the real-time monitoring of the fluorescence intensity of HE molecules that are triggered by intercellular ROS. This acquired drug delivery system provided a novel platform to integrate efficient cell-specific drug delivery with real-time monitoring of therapeutic efficacy.


Subject(s)
Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Drug Carriers/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Drug Carriers/chemical synthesis , Drug Carriers/metabolism , Endocytosis/physiology , Ethidium/analogs & derivatives , Ethidium/chemistry , Ethidium/metabolism , Fluorescence , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Folic Acid/chemistry , Folic Acid/metabolism , Humans , MCF-7 Cells , Microscopy, Confocal/methods , Nanoparticles/metabolism , Polyamines/chemistry , Polyamines/metabolism , Reactive Oxygen Species/metabolism , Titanium/metabolism
11.
Analyst ; 143(21): 5170-5175, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30259917

ABSTRACT

Facile and sensitive detection methods of cancer cells in the early stage are beneficial for monitoring cancers and treating patients in time to reduce the death rate. In this work, an ultrasensitive cytosensor was constructed using aptamers as cell capturers and metal ion-exchanged titanium phosphate nanospheres as electrochemical probes. KH1C12 can specifically recognize HL-60 cells and distinguish them from other cell lines, K562 and CCRF-CEM, to obtain high selectivity. Cadmium ion functionalized titanium phosphate nanospheres show large quantities of electroactive cadmium ion output and a highly sensitive electrochemical signal. This proposed cytosensor showed a wide dynamic linear range from 102 cells per mL to 107 cells per mL with a low detection limit of 35 cells per mL, providing a new, simple and ultrasensitive platform for cancer diagnosis in biomedical and clinical research.


Subject(s)
Aptamers, Nucleotide/chemistry , Nanospheres/chemistry , Titanium/chemistry , Biosensing Techniques/methods , Cadmium/chemistry , Cell Tracking/methods , Electrochemical Techniques/methods , HL-60 Cells , Humans , Limit of Detection , Particle Size , Sensitivity and Specificity
12.
ACS Appl Mater Interfaces ; 10(39): 33097-33104, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30071724

ABSTRACT

Sodium-ion batteries suffer the disadvantages of poor rate performance and cycling stability due to its sluggish sodiation kinetics. A rational design strategy for both materials compositions and structures has been proposed to meet these challenges. Herein, a triple-component composite derived from metal-organic frameworks, comprising FeS2, nitrogen-sulfur co-doped porous carbon, and reduced graphene oxide (FeS2@NSC/G), has been successfully synthesized. With the capacities contributions from different sodium storage routes (diffusion-controlled processes and surface capacitive processes) at varies rate conditions, it is aiming to make full use of each component in the electrode composite and their unique porous structures. Expected electrode properties have been achieved and related electrochemical behaviors have also been investigated. The strategy would present a promising thought for composites design, which could enhance high-rate electrochemical energy storage performances.

13.
Dalton Trans ; 47(17): 5977-5984, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29589630

ABSTRACT

The preparation of crystalline molecularly supertetrahedral Tn clusters with variable sizes and components is of vital importance for the fundamental study of their physicochemical properties. However, setting up an efficient method to stabilize large discrete Tn clusters is a challenge due to their high negative charges and polymerization nature. In this work, we report on the ionothermal synthesis of three discrete T4 cluster compounds, namely [Bmmim]5[(CH3)2NH2]4[NH4][M4In16S31(SH)4]·6H2O (M = Mn (1), Zn (2), Cd (3), Bmmim = 1-buty-2,3-dimethyl-imidazolium), and four discrete T5 cluster compounds, namely [Bmmim]10[NH4]3[Cu5Ga30-xInxS52(SH)4] (x = 6.6 (5), 14.5 (6), 23.8 (7), and 30 (8)). The compound [Bmmim]10[NH4]3[Cu5Ga30S52(SH)4] (4) previously reported by us features a discrete T5 cluster. The steep UV-Vis absorption edges indicate band gaps of 2.20 eV for 1, 2.64 eV for 2, 2.69 eV for 3, 3.04 eV for 4, 2.65 eV for 5, 2.48 eV for 6, 2.32 eV for 7, and 2.30 eV for 8. The compositions of T5 clusters could be varied with the ratios of Ga : In in the starting reagents, providing an opportunity to systematically control the band gaps and fluorescence performances of T5 cluster-based compounds. This research might advance the understanding of the ionothermal preparation and functionality tuning of crystalline chalcogenides.

14.
Dalton Trans ; 47(8): 2810-2819, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29417117

ABSTRACT

In this paper, we introduced light and abundant metal magnesium into a cobalt-based metal organic framework (Co-MOF, [(CH3)2NH2]2[Co3(bpdc)4]·5DMF·4CH3OH) (1, H2bpdc = 4,4'-biphenyldicarboxylic acid, DMF = N,N-dimethylformamide) as a heteroatom to synthesize Mg-Co bimetallic MOFs, namely [(CH3)2NH2]2[MgCo2(bpdc)4]·4DMF·5CH3OH (2) and [(CH3)2NH2]2[Mg1.2Co1.8(bpdc)4] 4DMF·4CH3OH·6H2O (3). Based on the formation of a rather low density framework after the introduction of the light Mg2+, such bimetallic MOFs exhibited higher gas adsorption abilities than the isostructural Co-based MOF 1. N2 adsorption measurements demonstrate that the BET surface area of 3 is 305.4 m2 g-1, exhibiting three times that of 1 (104.4 m2 g-1). Significantly, due to the introduction of the low-melting Mg2+, the Mg-Co MOFs could be further utilized as precursors for porous carbons only by calcination at a mild temperature of 600 °C which could exhibit a BET surface as high as 712.78 m2 g-1. Furthermore, after post-synthetic modification with a N/S heteroatom at 900 °C, the obtained hierarchical carbons exhibit superior activity in the oxygen reduction reaction (ORR) that is comparative to the commercial Pt/C catalyst. TEM results indicate that Co-embedded carbon nanotube (CNT)-containing hierarchically nanoporous carbons have been obtained. This study may offer a new avenue to prepare porous carbons utilizing Mg-containing bimetallic MOFs as sacrificial templates.

15.
Angew Chem Int Ed Engl ; 57(3): 678-682, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29205713

ABSTRACT

A new type of materials, organic salts in the crystal state, have ultralong organic phosphorescence (UOP) under ambient conditions. The change of cations (NH4+ , Na+ , or K+ ) in these phosphors gives access to tunable UOP colors ranging from sky blue to yellow green, along with ultralong emission lifetimes of over 504 ms. Single-crystal analysis reveals that unique ionic bonding can promote an ordered arrangement of organic salts in crystal state, which then can facilitate molecular aggregation for UOP generation. Additionally, reversible ultralong phosphorescence can be realized through the alternative employment of fuming gases (ammonia and hydrogen chloride), demonstrating its potential as a candidate for visual ammonic or hydrogen chloride gas sensing. The results provide an environmental responsible and practicable synthetic approach to expanding the scope of ultralong organic phosphorescent materials as well as their applications.

16.
Adv Mater ; 29(35)2017 Sep.
Article in English | MEDLINE | ID: mdl-28714219

ABSTRACT

Visible light is much more available and less harmful than ultraviolet light, but ultralong organic phosphorescence (UOP) with visible-light excitation remains a formidable challenge. Here, a concise chemical approach is provided to obtain bright UOP by tuning the molecular packing in the solid state under irradiation of available visible light, e.g., a cell phone flashlight under ambient conditions (room temperature and in air). The excitation spectra exhibit an obvious redshift via the incorporation of halogen atoms to tune intermolecular interactions. UOP is achieved through H-aggregation to stabilize the excited triplet state, with a high phosphorescence efficiency of 8.3% and a considerably long lifetime of 0.84 s. Within a brightness of 0.32 mcd m-2 that can be recognized by the naked eye, UOP can last for 104 s in total. Given these features, ultralong organic phosphorescent materials are used to successfully realize dual data encryption and decryption. Moreover, well-dispersed UOP nanoparticles are prepared by polymer-matrix encapsulation in an aqueous solution, and their applications in bioimaging are tentatively being studied. This result will pave the way toward expanding metal-free organic phosphorescent materials and their applications.

17.
Angew Chem Int Ed Engl ; 54(40): 11616-23, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26266458

ABSTRACT

Given that surfactants can control the shape and size of micro-/nanoparticles, they should be able to direct the growth of bulk crystals. This Minireview summarizes recent developments in the application of surfactants for the preparation of new crystalline inorganic materials, including chalcogenides, metal-organic frameworks, and zeolite analogues. The roles of surfactants in different reaction systems are discussed.

18.
Org Lett ; 17(3): 560-3, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25629398

ABSTRACT

A novel BN-fused coronene derivative 1,5,9-triaza-2,6,10-triphenylboracoronene (1) has been successfully synthesized in one step from 2,3,6,7,9,10-hexamethoxy-1,5,9-triamino-triphenylene. Compound 1 has been investigated using photophysical, electrochemical, and molecular simulation methods. Interestingly, three phenyl groups at B centers in compound 1 can be replaced by hydroxyl units stepwise through hydroxylation in wet organic solvents, leading to changes in the packing and physical properties.

19.
Chem Asian J ; 10(1): 116-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25252165

ABSTRACT

A new tetraazatetracene derivative, 2,3-[4,4'-bis(N,N-diphenylamino)benzyl]-5,12-bis[(triisopropylsilyl)ethynyl]-1,4,6,11-tetraazatetracene (TPAs-BTTT), displays rewritable multilevel memory behavior, which is probably induced by multielectron intramolecular charge transfer (CT).

20.
Angew Chem Int Ed Engl ; 54(2): 546-50, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25394683

ABSTRACT

Inserting polymers into a crystalline inorganic matrix to understand the structure, position, and the structure-property relationships of the resulting composites is important for designing new inorganic-organic materials and tuning their properties. Single crystals of polymer-chalcogenide composites were successfully prepared by trapping polyethyleneglycol within a selenidostannate matrix under surfactant-thermal conditions. This work might provide a new strategy for preparing novel crystalline polymer-inorganic composites through encapsulating polymer chains within inorganic matrices.

SELECTION OF CITATIONS
SEARCH DETAIL