Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
2.
Adv Sci (Weinh) ; 11(13): e2308123, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240582

ABSTRACT

Fluoro- and chlorofluorocabons (FC/CFCs) are important refrigerants, solvents, and fluoropolymers in industry while being toxic and carrying high global warming potential. Detection and reclamation of FC/CFCs based on adsorption technology with highly selective adsorbents is important to labor safety and environmental protection. Herein, the study reports an integrated method to combine capture, separation, enrichment, and analysis of representative FC/CFCs (chlorodifluoromethane(R22) and 1,1,1,2-tetrafluoroethane (R134a)) by using the highly stable and porous Zr-MOF, DUT-67. Gas adsorption and breakthrough experiments demonstrate that DUT-67 has high R22/R134a uptake (124/116 cm3 g-1) and excellent R22/R134a/CO2 separation performance (IAST selectivities of R22/CO2 and R134a/CO2 ranging from 51.4 to 33.3, and 31.1 to 25.8), even in rather low concentration and humid conditions. A semi-quantitative analysis protocol is set up to analyze the low concentrations of R22/R134a based on the high selective R22/R134a adsorption ability, fast adsorption kinetics, water-resistant utility, facile regeneration, and excellent recyclability of DUT-67. In situ single-crystal X-ray diffraction, theoretical calculations, and in situ diffuse reflectance infrared Fourier transform spectra have been employed to understand the adsorption mechanism. This work may provide a potential adsorbent for purge and trap technique under room temperature, thus promoting the application of MOFs for VOCs sampling and quantitative analysis.

3.
J Am Chem Soc ; 146(5): 3449-3457, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38268407

ABSTRACT

The core features of covalent organic frameworks (COFs) are crystallinity and porosity. However, the synthesis of single-crystal COFs with monomers of diverse reactivity and adjustment of their pore structures remain challenging. Here, we show that linkers that can react with a node to form single-crystal COFs can guide other linkers that form either COFs or amorphous polymers with the node to gain single-crystal COFs with mixed components, which are homogeneous on the unit cell scale with controlled ratios. With the linker-guided crystal growth method, we created nine types of single-crystal COFs with up to nine different components, which are more complex than any known crystal. The structure of the crystal adapted approximately to that of the main component, and its pore volume could be expanded up to 8.8%. Different components lead to complex and diverse pore structures and offer the possibilities to gain positive synergies, as exemplified by a bicomponent COF with 2200 and 733% SO2 uptake capacity of that of the two pure-component counterparts at 298 K and 0.002 bar. The selectivity for separation of SO2/CO2 ranges from 1230 to 4247 for flue gas based on ideal adsorbed solution theory, recording porous crystals. The bicomponent COF also exhibits a 1300% retention time of its pure-component counterparts for SO2 in a dynamic column breakthrough experiment for deep desulfurization.

4.
ACS Appl Mater Interfaces ; 16(1): 847-852, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38153916

ABSTRACT

Acetylene (C2H2) is widely used as a raw material for producing various downstream commodities in the petrochemical and electronic industry. Therefore, the acquisition of high-purity C2H2 from a C2H2/CO2 mixture produced by partial methane combustion or thermal hydrocarbon cracking is of great significance yet highly challenging due to their similar physical and chemical properties. Herein, we report an anionic metal-organic framework (MOF) named LIFM-210, which has Li+ cations in the pores and shows a higher adsorption affinity for C2H2 than CO2. LIFM-210 is constructed by a unique tetranuclear Ni(II) cluster acting as a 10-connected node and an organic ligand acting as a 5-connected node. Single-component adsorption and transient breakthrough experiments demonstrate the good C2H2 selective separation performance of LIFM-210. Theoretical calculations revealed that Li+ ions strongly prefer C2H2 to CO2 and are primary adsorption sites, playing vital roles in the selective separation of C2H2/CO2.

5.
Angew Chem Int Ed Engl ; 62(52): e202315382, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37945541

ABSTRACT

By synergistically employing four key strategies: (I) introducing tetraphenylethylene groups as the central core unit with aggregation-induced emission (AIE) properties, (II) optimizing the π-conjugated length by extending the building block branches, (III) incorporating flexible groups containing ethylenic bonds, and (IV) applying crystal engineering to attain dense stacking mode and highly twisty conformation, we successfully synthesized a series of hydrogen-bonded organic frameworks (HOFs) exhibiting exceptional one/two-photon excited fluorescence. Notably, when utilizing the fluorescently superior building block L2, HOF-LIFM-7 and HOF-LIFM-8 exhibiting high quantum yields (QY) of 82.1 % and 77.1 %, and ultrahigh two-photon absorption (TPA) cross-sections of 148959.5 GM and 123901.1 GM were achieved. These materials were successfully employed in one and two-photon excited lysosome-targeting cellular imaging. It is believed that this strategy, combining building block optimization and crystal engineering, holds significant potential for guiding the development of outstanding fluorescent HOF materials.

6.
J Am Chem Soc ; 145(26): 14354-14364, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37348117

ABSTRACT

Deep SO2 removal and recovery as industrial feedstock are of importance in flue-gas desulfurization and natural-gas purification, yet developing low-cost and scalable physisorbents with high efficiency and recyclability remains a challenge. Herein, we develop a viable synthetic protocol to produce DUT-67 with a controllable MOF structure, excellent crystallinity, adjustable shape/size, milli-to-kilogram scale, and consecutive production by recycling the solvent/modulator. Furthermore, simple HCl post-treatment affords depurated DUT-67-HCl featuring ultrahigh purity, excellent chemical stability, fully reversible SO2 uptake, high separation selectivity (SO2/CO2 and SO2/N2), greatly enhanced SO2 capture capacity, and good reusability. The SO2 binding mechanism has been elucidated by in situ X-ray diffraction/infrared spectroscopy and DFT/GCMC calculations. The single-step SO2 separation from a real quaternary N2/CO2/O2/SO2 flue gas containing trace SO2 is implementable under dry and 50% humid conditions, thus recovering 96% purity. This work may pave the way for future SO2 capture-and-recovery technology by pushing MOF syntheses toward economic cost, scale-up production, and improved physiochemical properties.

7.
ACS Appl Mater Interfaces ; 14(40): 45444-45450, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36178410

ABSTRACT

Adsorptive separation based on porous solid adsorbents has emerged as an excellent effective alternative to energy-intensive conventional separation methods in a low energy cost and high working capacity manner. However, there are few stable mesoporous metal-organic frameworks (MOFs) for efficient purification of methane from other light hydrocarbons in natural gas. Herein, we report a series of stable mesoporous MOFs, MIL-101-Cr/Fe/Fe-NH2, for efficient separation of CH4 and C3H8 from a ternary mixture CH4/C2H6/C3H8. Experimental results show that all three MOFs possess excellent thermal, acid/basic, and hydrothermal stability. Single-component adsorption suggested that they have high C3H8 adsorption capacity and commendable selectivity for C3H8 and C2H6 over CH4. Transient breakthrough experiments further certified the ability of direct separation of CH4 from simulated natural gas and indirect recovery of C3H8 from the packing column. Theoretical calculations illustrated that the van der Waals force proportional to the molecular weight is the key factor and that the structural integrity and defect can impact separation performances.

8.
Angew Chem Int Ed Engl ; 61(43): e202211356, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36055964

ABSTRACT

By designing a tetraphenylethylene (TPE)-based AIEgen-ligand with reduced symmetry, we obtained two alkaline-earth metal-based MOFs (LIFM-102 and LIFM-103) with dense packing structures and low porosity as proved by single-crystal X-ray diffraction and CO2 sorption data. Excitingly, the desolvated MOFs with rigid environment and reduced lattice free solvent exhibit high quantum yields (QY, 64.9 % and 79.4 %) and excellent two-photon excited photoluminescence (TPA cross-sections, 2946.6 GM and 2899.0 GM), while maintaining the external-stimuli-responsive properties suitable for anticounterfeit fields. The effect of ligand conformation was validated by comparing the structure and fluorescence properties of the samples before and after desolvation and further verified by theoretical calculations. This work expands the study on TPE-cored materials to symmetry-reduced ligand and might bring forward novel structures and excellent photoluminescent properties in the future.

9.
ACS Appl Mater Interfaces ; 14(28): 32105-32111, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35791739

ABSTRACT

A nitro-decorated microporous covalent organic framework, TpPa-NO2, has been synthesized in a gram scale with a one-pot reaction. It can effectively selectively separate C2H4 from a C2H2/C2H4/CO2 mixture and capture CO2 from CO2/N2 based on ideal adsorption solution theory calculations and transient breakthrough experiments. Theoretical calculations illustrated that the hydrogen atoms of imine bonds, carbonyl oxygen, and nitro group show high affinity toward C2H2 and CO2, playing vital roles in efficient separation.

10.
Angew Chem Int Ed Engl ; 61(32): e202205556, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35661372

ABSTRACT

Organic LPL (long-persistent luminescence) materials have sparked extensive research interest due to the ultralong-lived triplet states. Although numerous organic LPL materials have been reported, most of the triplet emission was static and monotonous. Therefore, LPL materials with dynamic triplet emission are urgently required. A triamino-s-triazine derivative 1 with dynamic LPL was fabricated. The single-crystal structure shows that the abundant intermolecular interactions and small free volume restrict the molecular motion and avoid the quenchers. Spectral and theoretical calculations upheld the existence of multiple excited states in 1, and the migration of electrons between multiple excited states is very sensitive to external stimuli. By modulating the stimulus, the residence of electrons in different triplet states can be manipulated to achieve RGB LPL. Importantly, blue LPL was achieved by manipulating the anti-Kasha emission. And the red LPL can still be observed at high temperature.

11.
Inorg Chem ; 61(19): 7212-7216, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35502907

ABSTRACT

The generation of high-purity thorium is the precondition for next-generation nuclear energy; however, this remains a challenging task. To this end, we present herein an ultrasimple technique with the combination of crystallization plus phase transformation. Crystallization into ECUT-68 is found to show almost 100% selective uptake of Th(IV) over rare earth and UO22+ ions, while multistep phase transformation from metal-organic frameworks (MOFs) to inorganic compounds is found to directly generate inorganic Th(IV) compound and then Th(IV) solution, suggesting its superior application in the generation of high-purity thorium.

12.
Angew Chem Int Ed Engl ; 61(26): e202201766, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35313055

ABSTRACT

The design and creation of soft porous crystals combining regularity and flexibility may promote potential applications for gas storage and separation due to their deformable framework's responsiveness to external stimuli. The flexibility of metal-organic frameworks (MOFs) relies on alterable degrees of freedom that are mainly provided by organic linkers or the junctions linking organic and inorganic building units. Herein, we report a new dynamic MOF whose flexibility originates from an unprecedented tailorable Mn8 O38 -cluster and shows simultaneous coordination geometry changes and ligand migration that are reversibly driven by guest exchange. This provides an extra degree of freedom to the framework's deformation, resulting in three-dimensional variations in the framework that subtly respond to varied aromatic molecules. The gas adsorption behavior of this flexible MOF was evaluated, and the selective separation of light hydrocarbons and Freon gases is achieved.

13.
Angew Chem Int Ed Engl ; 61(4): e202112097, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34779556

ABSTRACT

The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica-gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore-nanospace post-engineering strategy to optimize the hydrophilicity, water-uptake capacity and air-purifying ability of metal-organic frameworks (MOFs) with long-term stability, offering an ideal candidate with autonomous multi-functionality of moisture control and pollutants sequestration. Through variant tuning of organic-linkers carrying hydrophobic and hydrophilic groups in the pore-nanospaces of prototypical UiO-67, a moderately hydrophilic MOF (UiO-67-4Me-NH2 -38 %) with high thermal, hydrolytic and acid-base stability is screened out, featuring S-shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %-65 % RH) and adverse health effects minimization (40-60 % RH). Its exceptional attributes of water-uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application.


Subject(s)
Metal-Organic Frameworks/chemistry , Nanoparticles/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Air Pollution, Indoor , Humidity , Molecular Structure , Particle Size , Surface Properties , Water/chemistry , Water Pollutants, Chemical/chemistry
14.
Inorg Chem ; 60(23): 17440-17444, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34756021

ABSTRACT

Global warming associated with CO2 emission has led to frequent extreme weather events in recent years. Carbon capture using porous solid adsorbents is promising for addressing the greenhouse effect. Herein, we report a series of robust metal-organic cages (MOCs) featuring various functional groups, such as methyl and amine groups, for CO2/N2 separation. Significantly, the amine-group-functionalized MOC-QW-3-NH2 displays the best selective CO2 adsorption performance, as confirmed by single-component adsorption and transient breakthrough experiments. The distinct CO2 adsorption mechanism has been well studied via theoretical calculations, confirming that the amine groups play a vital role for efficiently selective CO2 adsorption resulting from hierarchical adsorbate-framework interaction.

15.
Inorg Chem ; 60(11): 8211-8217, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34018393

ABSTRACT

Encapsulating a certain guest molecule in an assigned molecular compartment and then endowing the corresponding potential remains a huge challenge for metal-organic frameworks. To this end, we demonstrate a good example, for the first time, based on an actinide-based MOF. The used MOF (namely, ECUT-300) shows a unique uranyl-TPE anionic skeleton with three distinct cages, viz., mesopore A (2.8 nm), mesopore B (2.0 nm), and micropore C (0.9 nm). Through solid-liquid reaction, a RhB+ molecule can be encapsulated into ECUT-300 with the exact location in mesopore B, whereas the encapsulation of a metal-organic cation of [Fe(tpy)2]3+ was observed with the location in micropore C, suggesting unprecedented classified encapsulation. Impressively, the potential of the resulting guest@MOF composites is also highly dependent on the type of encapsulated guest molecules, for example, white-light emission for RhB+ and selective adsorption of C2H2 over CO2 for [Fe(tpy)2]3+.

16.
Inorg Chem ; 60(5): 3447-3451, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33595299

ABSTRACT

Removal of trace SO2 from an SO2-containing product is now receiving increasing attention. However, designing a robust porous adsorbent with high SO2 adsorption capacity and good SO2/CO2 selectivity, as well as validity under humid conditions, is still a challenging task. Herein, we report a porous cage-based metal-organic framework, namely ECUT-111, which contains two distinct cages with apertures of 5.4 and 10.2 Å, respectively, and shows high a BET of up to 1493 m2/g and a pore volume of 0.629 cm3/g. Impressively, ECUT-111 enables an ultrahigh SO2 uptake of up to 11.56 mmol/g, exceeding most reported top-performing adsorbents for such a use. More importantly, complete separation of trace SO2 from SO2/CO2 and SO2/CO2/N2 mixtures, especially under humid conditions, and excellent recycle use were observed for ECUT-111, suggesting its superior application in desulfurization of SO2-containing products.

17.
Adv Sci (Weinh) ; 6(16): 1900547, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31453066

ABSTRACT

An ideal porous adsorbent toward uranium with not only large adsorption capacity and high selectivity but also broad applicability even under rigorous conditions is highly desirable but still extremely scarce. In this work, a porous adsorbent, namely [NH4]+[COF-SO3 -], prepared by ammoniating a SO3H-decorated covalent organic framework (COF) enables remarkable performance for uranium extraction. Relative to the pristine SO3H-decorated COF (COF-SO3H) with uranium adsorption capacity of 360 mg g-1, the ammoniated counterpart of [NH4]+[COF-SO3 -] affords ultrahigh uranium uptake up to 851 mg g-1, creating a 2.4-fold enhancement. Such a value is the highest among all reported porous adsorbents for uranium. Most importantly, a large distribution coefficient, K d U, up to 9.8 × 106 mL g-1 is observed, implying extremely strong affinity toward uranium. Consequently, [NH4]+[COF-SO3 -] affords highly selective adsorption of uranium over a broad range of metal ions such as SU/Cs = 821, SU/Na = 277, and SU/Sr = 124, making it as effective uranium adsorbent from seawater, resulting in amazing uranium adsorption capacity of 17.8 mg g-1. Moreover, its excellent chemostability also make it an effective uranium adsorbent even under rigorous conditions (pH = 1, 8, and 3 m acidity).

18.
J Ethnopharmacol ; 185: 105-9, 2016 Jun 05.
Article in English | MEDLINE | ID: mdl-26972507

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Isochlorgenic acid C (IAC), one of the bioactive compounds of Lonicera japonica, exhibited diverse pharmacological effects. However, its pharmacokinetic properties and bioavailability remained unresolved. AIM OF THE STUDY: To determine the absolute bioavailability in rats and the dose proportionality on the pharmacokinetics of single oral dose of IAC. MATERIALS AND METHODS: A validated HPLC-MS method was developed for the determination of IAC in rat plasma. Plasma concentration versus time data were generated following oral and intravenous dosing. The pharmacokinetic analysis was performed using DAS 3.0 software analysis. Absolute bioavailability in rats was determined by comparing pharmacokinetic data after administration of single oral (5, 10 and 25mgkg(-1)) and intravenous (5mgkg(-1)) doses of IAC. The dose proportionality of AUC(0-∞) and Cmax were analyzed by linear regression. RESULTS: Experimental data showed that absolute oral bioavailability of IAC in rats across the doses ranged between 14.4% and 16.9%. The regression analysis of AUC(0-∞) and Cmax at the three doses (5, 10 and 25mgkg(-1)) indicated that the equations were y=35.23x+117.20 (r=0.998) and y=121.03x+255.74 (r=0.995), respectively. CONCLUSIONS: A new HPLC-MS method was developed to determine the bioavailability and the dose proportionality of IAC. Bioavailability of IAC in rats was poor and both Cmax and AUC(0-∞) of IAC had a positive correlation with dose. Evaluation of the pharmacokinetics of IAC will be useful in assessing concentration-effect relationships for the potential therapeutic applications of IAC.


Subject(s)
Chlorogenic Acid/analogs & derivatives , Animals , Area Under Curve , Biological Availability , Chlorogenic Acid/blood , Chlorogenic Acid/pharmacokinetics , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Male , Mass Spectrometry , Molecular Structure , Random Allocation , Rats , Rats, Sprague-Dawley
19.
Pharm Biol ; 54(10): 2168-75, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26983455

ABSTRACT

Context Oxymatrine (OMT) is beneficial to human health by exerting various biological effects. Objective To investigate the absorption mechanism of OMT and discover absorption enhancers using Madin-Darby canine kidney (MDCK) cell monolayers. Materials and methods Concentration effects on the transport of OMT were measured in the range of 1.0 × 10(-5)-1.0 × 10(-3) M in 2 h. Then, the effect of time, direction, temperature and pH on the transport of OMT at 10(-4) M was studied. Moreover, Papp of OMT was determined in the absence/presence of cyclosporine and surfactants at 100 µM to further confirm the relative transport mechanism. Results The Papp AP→BL ranged from (3.040 ± 0.23) × 10(-6) to (3.697 ± 0.19) × 10(-6 )cm/s as the concentration varied from 10(-5) to 10(-3) M. OMT showed similar Papp at 4 and 37 °C (p > 0.05). Increasing the apical pH 7.4 and 8.0 resulted in Papp versus pH 5.0 (p < 0.01). Furthermore, in the presence of cyclosporine and surfactants including sodium citrate, sodium dodecyl sulphate (SDS) and deoxysodium cholate, Papp was (0.318 ± 0.033) × 10(-5), (0.464 ± 0.048) × 10(-5), (0.897 ± 0.115) × 10(-5) and (1.341 ± 0.122) × 10(-5 )cm/s, respectively. In the presence of surfactants, Papp significantly increased up to 1.5-4.3-fold (p < 0.05). Discussion and conclusion OMT transport across MDCK cell monolayers was by passive diffusion. Sodium citrate, SDS and deoxysodium cholate serve as excellent absorption enhancers which are useful for the related research improving the oral bioavailability of OMT.


Subject(s)
Alkaloids/metabolism , Epithelial Cells/metabolism , Kidney/metabolism , Quinolizines/metabolism , Renal Reabsorption , Animals , Citrates/pharmacology , Cyclosporine/pharmacology , Deoxycholic Acid/pharmacology , Diffusion , Dogs , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Hydrogen-Ion Concentration , Kidney/drug effects , Kinetics , Linear Models , Madin Darby Canine Kidney Cells , Permeability , Renal Reabsorption/drug effects , Sodium Citrate , Sodium Dodecyl Sulfate/pharmacology , Surface-Active Agents/pharmacology , Temperature
20.
J Pharm Sci ; 105(2): 897-903, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26869434

ABSTRACT

The study was aimed to investigate the absorption and metabolism of oxymatrine (OMT) which contributed to its poor bioavailability. Determinations of OMT absorption and metabolism in rats were evaluated using techniques of the in situ perfused rat intestine-liver preparation and recirculated intestine preparation. Furthermore, chemical inhibition experiments in rat liver microsomes were used to determine the principal cytochrome P450 (CYP) isoforms involved in OMT metabolism. In the intestine-liver preparation, the steady state liver extraction ratio (0.753 ± 0.054) of OMT was 33 times higher than that for the intestine (0.023 ± 0.002). The portal vein mainly consisted of OMT, and was devoid of the metabolite matrine, whereas both OMT and matrine were detected in hepatic vein. With the intestine preparation, the extent of OMT absorption at the end of 120 min of perfusion was 4.79 ± 0.352%. The first-order rate constant for OMT absorption was 0.05 ± 0.003 min(-1). The inhibitor of CYP3A2 had strong inhibitory effect on OMT metabolism in a concentration-dependent manner, and value was reduced to 29.73% of control. The 2 perfusion techniques indicated that poor bioavailability of OMT in rats is due mostly to poor absorption and higher hepatic elimination and CYP3A2 appears to contribute to OMT metabolism in rat liver.


Subject(s)
Alkaloids/metabolism , Intestinal Mucosa/metabolism , Liver/metabolism , Microsomes, Liver/metabolism , Perfusion/methods , Quinolizines/metabolism , Alkaloids/pharmacology , Animals , Dose-Response Relationship, Drug , Hepatic Veins/drug effects , Hepatic Veins/metabolism , Intestinal Absorption/drug effects , Intestinal Absorption/physiology , Intestines/blood supply , Intestines/drug effects , Liver/blood supply , Liver/drug effects , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Microsomes, Liver/drug effects , Quinolizines/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...