Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Acta Pharmacol Sin ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789496

ABSTRACT

Renal tubular epithelial cell senescence plays a critical role in promoting and accelerating kidney aging and age-related renal fibrosis. Senescent cells not only lose their self-repair ability, but also can transform into senescence-associated secretory phenotype (SASP) to trigger inflammation and fibrogenesis. Recent studies show that mitochondrial dysfunction is critical for renal tubular cell senescence and kidney aging, and calcium overload and abnormal calcium-dependent kinase activities are involved in mitochondrial dysfunction-associated senescence. In this study we investigated the role of mitochondrial calcium overload and mitochondrial calcium uniporter (MCU) in kidney aging. By comparing the kidney of 2- and 24-month-old mice, we found calcium overload in renal tubular cells of aged kidney, accompanied by significantly elevated expression of MCU. In human proximal renal tubular cell line HK-2, pretreatment with MCU agonist spermine (10 µM) significantly increased mitochondrial calcium accumulation, and induced the production of reactive oxygen species (ROS), leading to renal tubular cell senescence and age-related kidney fibrosis. On the contrary, pretreatment with MCU antagonist RU360 (10 µM) or calcium chelator BAPTA-AM (10 µM) diminished D-gal-induced ROS generation, restored mitochondrial homeostasis, retarded cell senescence, and protected against kidney aging in HK-2 cells. In a D-gal-induced accelerated aging mice model, administration of BAPTA (100 µg/kg. i.p.) every other day for 8 weeks significantly alleviated renal tubuarl cell senescence and fibrosis. We conclude that MCU plays a key role in promoting renal tubular cell senescence and kidney aging. Targeting inhibition on MCU provides a new insight into the therapeutic strategy against kidney aging.

2.
Small ; : e2311421, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38282177

ABSTRACT

To improve ion transport kinetics and electronic conductivity between the different phases in sodium/lithium-ion battery (LIB/SIB) anodes, heterointerface engineering is considered as a promising strategy due to the strong built-in electric field. However, the lattice mismatch and defects in the interphase structure can lead to large grain boundary resistance, reducing the ion transport kinetics and electronic conductivity. Herein, monometallic selenide Fe3 Se4 -Fe7 Se8 semi-coherent heterointerface embedded in 3D connected Nitrogen-doped carbon yolk-shell matrix (Fe3 Se4 -Fe7 Se8 @NC) is obtained via an in situ phase transition process. Such semi-coherent heterointerface between Fe3 Se4 and Fe7 Se8 shows the matched interfacial lattice and strong built-in electric field, resulting in the low interface impedance and fast reaction kinetics. Moreover, the yolk-shell structure is designed to confine all monometallic selenide Fe3 Se4 -Fe7 Se8 semi-coherent heterointerface nanoparticles, improving the structural stability and inhibiting the volume expansion effect. In particular, the 3D carbon bridge between multi-yolks shell structure improves the electronic conductivity and shortens the ion transport path. Therefore, the efficient reversible pseudocapacitance and electrochemical conversion reaction are enabled by the Fe3 Se4 -Fe7 Se8 @NC, leading to the high specific capacity of 439 mAh g-1 for SIB and 1010 mAh g-1 for LIB. This work provides a new strategy for constructing heterointerface of the anode for secondary batteries.

3.
Small ; 20(21): e2310117, 2024 May.
Article in English | MEDLINE | ID: mdl-38155494

ABSTRACT

Chemical mechanical polishing (CMP) offers a promising pathway to smooth third-generation semiconductors. However, it is still a challenge to reduce the use of additional oxidants or/and energy in current CMP processes. Here, a new and green atomically smoothing method: Piezocatalytic-CMP (Piezo-CMP) is reported. Investigation shows that the Piezo-CMP based on tetragonal BaTiO3 (t-BT) can polish the rough surface of a reaction sintering SiC (RS-SiC) to the ultra-smooth surface with an average surface roughness (Ra) of 0.45 nm and the rough surface of a single-crystal 4H-SiC to the atomic planarization Si and C surfaces with Ra of 0.120 and 0.157 nm, respectively. In these processes, t-BT plays a dual role of piezocatalyst and abrasive. That is, it piezo-catalytically generates in-situ active oxygen species to selectively oxidize protruding sites of SiC surface, yielding soft SiO2, and subsequently, it acts as a usual abrasive to mechanically remove these SiO2. This mechanism is further confirmed by density functional theory (DFT) calculation and molecular simulation. In this process, piezocatalytic oxidation is driven only by the original pressure and friction force of a conventional polishing process, thus, the piezo-CMP process do not require any additional oxidant and energy, being a green and effective polishing method.

4.
Mikrochim Acta ; 190(11): 426, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37792169

ABSTRACT

Metal-organic gels (MOGs) emerged as an attractive luminescent soft material for electrochemiluminescence (ECL). In this work, a cathodic ECL-activated europium metal-organic gel (Eu-MOG) has been synthesized by a facile mixing of Eu3+ with 4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine (Hcptpy) under mild conditions. The prepared Eu-MOG is highly mesoporous for co-reactant permeation to produce an ultra-stable and high-efficient ECL, based on the antenna effect of Eu3+ coordinating with Hcptpy. Moreover, dipicolinic acid (DPA) can competitively coordinate with Eu3+ instead of water molecules, producing an enhanced ECL signal. Therefore, an ECL enhancement assay was developed for DPA detection. There was a linear relationship between the ECL intensity and the logarithmic concentration of DPA in the 0.01-1 µM range, and the detection limit is 7.35 nM. This work displays the promising application of Eu-MOG in the ECL field, opening a broad inspection for seeking a new generation of ECL luminophores.

5.
Vascular ; : 17085381231194149, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37616577

ABSTRACT

OBJECTIVES: To perform a correlation analysis on the structural and functional changes of the carotid artery in patients with H-type hypertension. METHODS: Outpatients and inpatients with hypertension in our hospital between 2017 and 2018 were selected and divided into the H-type hypertension group (primary hypertension + plasma homocysteine ≥ 10 umol/l) (n = 30) and the simple hypertension group (primary hypertension + plasma Hcy < 10 umol/l) (n = 30) based on the plasma homocysteine (Hcy), and 30 healthy people were included in the control group. Thickness and stiffness parameters of the intima of the carotid artery (compliance coefficient [CC], stiffness index [ß], and pulse wave velocity [PWV]) were measured for all study participants using ultrasound radiofrequency signal-based quality intima-media thickness (QIMT) and quantitative arterial stiffness (QAS) for contrast analysis. RESULTS: Indexes such as QIMT, ß, and PWV of the carotid artery were significantly higher, and the CC was significantly lower in the H-type hypertension group and simple hypertension group than the control group (p < .05), and the difference was statistically significant; these indexes were significantly higher in the H-type hypertension group than in the simple hypertension group, and the CC was significantly lower than in the control group (p < .05), and the difference was statistically significant. CONCLUSIONS: Hypertension can accelerate structural and functional changes of the carotid artery intima, with these changes being more significant in H-type hypertension. The ultrasound radiofrequency technique can be used to quantitatively evaluate the structure and function of the carotid artery in patients with H-type hypertension.

6.
J Colloid Interface Sci ; 651: 589-601, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37562301

ABSTRACT

Highly reactive nanoclusters of metal oxides are extremely difficult to be synthesized due to their thermodynamic instability. For the first time, CuOx nanoclusters supported on anatase TiO2 nanotubes (NT) with many defects as anchoring sites were successfully prepared. Although the copper loading reached as high as 2.5 %, the size of CuOx nanoclusters in the sample of 2.5 %CuOx/NT were mainly around 1.0 nm. The aggregation of copper species during the calcination process was undoubtedly hampered by the anchoring effects of the abundant defects in NT support. Due to the highly exposed undercoordinated atoms of CuOx nanoclusters, the mixed valences of copper, and the strong interface interaction between CuOx nanoclusters and NT support, 2.5 %CuOx/NT-catalyzed ozonation showed the highest pseudo-first-order reaction rate constant of 8.5 × 10-2 min-1, 2.2 and 4.0 times that of NT-catalyzed ozonation and ozonation alone, respectively. Finally, the catalytic mechanism was revealed by both experiments and density functional theory calculations (DFT). The results demonstrated that the undercoordinated Cu in CuOx/NT could highly promote the adsorption of ozone with a high adsorption energy of -125.16 eV and the adsorbed ozone was activated immediately, tending to dissociate into a O2 molecule and a surface O atom. Thus, abundant reactive oxygen species, e.g., hydroxyl radical (·OH), superoxide radical (·O2-) and singlet oxygen (1O2), could be generated via chain reactions. Especially, ·OH mainly contributed to the removal of ibuprofen pollutants. This work sheds a light on the design and preparation of highly reactive nanoclusters of metal oxide catalysts for catalytic ozonation of refractory organic pollutants.

7.
J Colloid Interface Sci ; 651: 633-644, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37562305

ABSTRACT

Metal sulfide based photocatalysts are considered to be economic, environmentally benign and renewable. The rapid recombination of photogenerated electrons and holes and low solar energy utilization efficiency, however, remain a huge bottleneck. Herein, two-dimensional/two-dimensional (2D/2D) S-scheme WS2/Zn3In2S6 heterostructure with ultrathin nanosheets intervening between neighboring component has been designed. The large and intimate S-scheme heterojunctions facilitate interfacial charge separation/transfer and optimize the available redox potential. Besides, the ultrathin 2D/2D heterostructure ensures large specific surface area, maximized interface synergistic interaction, and effective exposure of surface active sites. As a result, 2 wt% WS2/Zn3In2S6 exhibits a high photocatalytic hydrogen production rate of 30.21 mmol·g-1·h-1 under simulated solar light illumination with an apparent quantum efficiency of 56.1% at 370 nm monochromatic light, far exceeding pristine Zn3In2S6 (6.65 mmol·g-1·h-1). Our work underscores the significance of integrating morphology engineering and S-scheme heterojunctions design for high-efficient and low-cost photocatalysts.

8.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 558-564, 2023 May.
Article in Chinese | MEDLINE | ID: mdl-37248584

ABSTRACT

Objective: To investigate the effects and mechanisms of zinc finger E-box binding homeobox transcription factor-2 ( ZEB2) on the proliferation, colony formation, migration, and invasion abilities and the epithelial-mesenchymal transition (EMT) of PANC-1 cells, a human pancreatic cancer cell line. Methods: Data on the expression of ZEB2 in pancreatic cancer tissues and paracancerous tissues from The Cancer Genome Atlas (TCGA) database were analyzed. PANC-1 pancreatic cancer cells were divided into si-NC group, si- ZEB2 group, pcDNA3.1 group, and pcDNA3.1- ZEB2 group. qRT-PCR and Western blot were conducted to confirm the effectiveness of ZEB2 knockdown or overexpression. CCK-8, colony formation, wound healing, and Transwell assays were conducted to examine the effects of ZEB2 on the proliferation, colony formation, migration, and invasion of PANC-1 cells. qRT-PCR and immunofluorescence assays were performed to examine the expression of E-cadherin and vimentin, the EMT markers, in the cells. Prediction of proteins interacting with ZEB2 was made through the STRING database. Results: TCGA database analysis showed that the expression level of ZEB2 in pancreatic cancer tissues was significantly higher than that in adjacent tissues ( P<0.05). Compared with those of cells in the control group, the proliferation, colony formation, migration, and invasion of cells in the si- ZEB2 group were decreased ( P<0.05). Compared with those of cells in the pcDNA3.1 group, the proliferation, colony formation, migration and invasion of cells in the pcDNA3.1- ZEB2 group were increased (all P<0.05). According to the results of qRT-PCR and immunofluorescence assays, compared with those of the si-NC group, the expression of E-cadherin mRNA, an epithelial marker, in the si- ZEB2 group increased, while the expression of vimentin mRNA, an mesenchymal marker, and the protein decreased. Compared with those of the pcDNA3.1 group, the expression of E-cadherin mRNA in the PANC-1 cells of the pcDNA3.1- ZEB2 group decreased, while the expression of vimentin mRNA and the protein increased (all P<0.05). Analysis with the STRING database predicted that 10 proteins had close interaction with ZEB2. Conclusion: Overexpression of ZEB2 promotes the migration, invasion, and the EMT process of PANC-1 pancreatic cancer cells.


Subject(s)
Apoptosis , Pancreatic Neoplasms , Humans , Vimentin/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement , Apoptosis/genetics , Cadherins/genetics , Cadherins/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Transcription Factors/metabolism , Epithelial-Mesenchymal Transition/genetics , RNA, Messenger/genetics , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms
9.
Org Lett ; 25(17): 3120-3125, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37098850

ABSTRACT

We report here the chromium-catalyzed three-component defluorinative cross-couplings of gem-difluoroalkenes with benzyl 2-pyridinyl ethers and aryl Grignard reagents under mild conditions, enabling the convenient synthesis of diarylmethylated monofluoroalkenes in good chemo- and stereoselectivity.

10.
J Colloid Interface Sci ; 640: 568-577, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36878074

ABSTRACT

The practical photocatalytic application of cadmium sulfide (CdS) has been significantly constrained by fast carrier recombination and significant photocorrosion. Therefore, we developed a three-dimensional (3D) step-by-step (S-scheme) heterojunction using the coupling interface between purple tungsten oxide (W18O49) nanowires and CdS nanospheres. The photocatalytic hydrogen evolution rate of optimized W18O49/CdS 3D S-scheme heterojunction can reach 9.7 mmol·h-1·g-1, 7.5 and 16.2 times greater than pure CdS (1.3 mmol·h-1·g-1) and 10 wt%-W18O49/CdS (mechanical mixing, 0.6 mmol·h-1·g-1), proving that the tight S-scheme heterojunction constructed by the hydrothermal method can efficiently enhance the carrier separation. Notably, the apparent quantum efficiency (AQE) of W18O49/CdS 3D S-scheme heterojunction approaches 7.5% and 3.5% at 370 nm and 456 nm, respectively, which is 7.5 and 8.8 times than pure CdS (1.0% and 0.4%). The produced W18O49/CdS catalyst also has relative stability of structure and hydrogen production. Additionally, the H2 evolution rate of W18O49/CdS 3D S-scheme heterojunction is 1.2 times greater than 1 wt%-platinum (Pt)/CdS (8.2 mmol·h-1·g-1), which indicates that the W18O49 can effectively replace the precious metal for boosting the hydrogen production rate.

12.
J Colloid Interface Sci ; 640: 31-40, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36827846

ABSTRACT

Converting solar energy into hydrogen energy is a feasible means to solve the current energy crisis. However, developing an excellent photocatalyst with high light utilization and stability for hydrogen production remains a great challenge. In this work, CoS2 nanoparticles as cocatalysts are growth on Zn3In2S6 nanosheets with abundant sulfur vacancies for hydrogen evolution, and the optimal rate of hydrogen evolution is as high as 5.69 mmol h-1 g-1 in the absence of noble metal co-catalyst Pt, which is 2.87 and 2.29 times that of CoS2/Zn3In2S6 (with few sulfur vacancies) and Zn3In2S6 (with rich sulfur vacancies). In addition, the hydrogen production rate of CoS2/Zn3In2S6 composite (with rich sulfur vacancies and 1 wt% Pt) is 24.17 mmol h-1 g-1, which is 4.25 and 1.90 times that of CoS2/Zn3In2S6 (with rich sulfur vacancies) and 1%-Pt/Zn3In2S6 (with rich sulfur vacancies), respectively. The apparent quantum efficiency (AQE) of CoS2/Zn3In2S6 composite (with rich sulfur vacancies and 1 wt% Pt) reaches 66.20% under light irradiation at the wavelength of 370 nm. Above all indicate that dual cocatalysts (CoS2 and Pt) and sulfur vacancies can promote the efficient hydrogen evolution activity of Zn3In2S6 nanosheets. This work will provide new ideas and insights for the development of photocatalytic hydrogen production technology.

13.
J Colloid Interface Sci ; 637: 465-476, 2023 May.
Article in English | MEDLINE | ID: mdl-36716670

ABSTRACT

Semiconductor photocatalytic water splitting is a green way to convert solar energy into chemical energy, but the recombination of electron and hole pairs and the low utilization of sunlight restrict the development of photocatalytic technology. By comparing the morphologies and hydrogen production properties of different proportions of solid solutions (CdxZn1-xS), one-dimensional (1D) Cd0.9Zn0.1S nanorods (NRs) with the best photocatalytic properties are obtained. In addition, 1D W18O49 nanowires are assembled on the surface of 1D Cd0.9Zn0.1S NRs to construct a novel 1D/1D step-scheme (S-scheme) W18O49/Cd0.9Zn0.1S heterojunction photocatalyst. The W18O49/Cd0.9Zn0.1S heterojunction expands the optical absorption capacity of Cd0.9Zn0.1S NRs to provide more energy for the photoexcitation of electrons. The optimal hydrogen production rate of W18O49/Cd0.9Zn0.1S NRs with W18O49 content of 9 wt% is as high as 66.3 mmol·h-1·g-1, which is 5.7 times and 1.6 times higher than that of Cd0.9Zn0.1S NRs and 1 wt% Pt/Cd0.9Zn0.1S NRs. The apparent quantum efficiency (AQE) of 9 wt% W18O49/Cd0.9Zn0.1S reaches 56.0 % and 25.9 % under light wavelength irradiation at 370 and 456 nm, respectively. After the 20 h cycle stability test, the activity of photocatalytic hydrogen evolution does not decrease, due that the severe photo-corrosion of Cd0.9Zn0.1S NRs is efficiently inhibited. This work not only provides a simple and controllable synthesis method for the preparation of heterojunction structure, but also opens up a new way to improve the hydrogen evolution activity and stability of sulfur compounds.

14.
Neural Regen Res ; 18(4): 832-839, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36204851

ABSTRACT

The extracellular matrix surrounding oligodendrocytes plays an important role during myelination and remyelination in the brain. In many cases, the microenvironment surrounding demyelination lesions contains inhibitory molecules, which lead to repair failure. Accordingly, blocking the activity of these inhibitory factors in the extracellular matrix should lead to more successful remyelination. In the central nervous system, oligodendrocytes form the myelin sheath. We performed primary cell culture and found that a natural increase in fibronectin promoted the proliferation of oligodendrocyte progenitors during the initial stage of remyelination while inhibiting oligodendrocyte differentiation. Poly-L-ornithine blocked these inhibitory effects without compromising fibronectin's pro-proliferation function. Experiments showed that poly-L-ornithine activated the Erk1/2 signaling pathway that is necessary in the early stages of differentiation, as well as PI3K signaling pathways that are needed in the mid-late stages. When poly-L-ornithine was tested in a lysolecithin-induced animal model of focal demyelination, it enhanced myelin regeneration and promoted motor function recovery. These findings suggest that poly-L-ornithine has the potential to be a treatment option for clinical myelin sheath injury.

15.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4658-4664, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36164872

ABSTRACT

The endophytic fungus Nigrospora sphaerica S5 derived from the semi-mangrove plant Myoporum bontioides was fermented. Its metabolites were purified by column chromatography. Nine compounds were obtained and identified as terezine P(1), 3-(1-hydroxyethyl)-4-methyl dihydrofuran-2(3H)-one(2), methylhydroheptelidate(3), hydroheptelidic acid(4), 5, 7-dimethoxy-4, 6-dimethylphthalide(5),(3R,4S)-(-)-4-hydroxymellein(6), pestalopyrone(7), indole-3-formaldehyde(8) and p-hydroxybenzaldehyde(9) by spectroscopic techniques. Terezine P(1) was a new alkaloid belonging to the terezine class with a pyrazine ring. Compounds 2-7 were lactones, of which 3 and 4 belonged to sesquiterpenes. Compounds 8 and 9 were indole alkaloids and phenols, respectively. Compounds 3-6 were purified from Nigrospora sp. for the first time. These compounds showed different degrees of antibacterial activity against Staphylococcus aureus, Escherichia coli of O6 serotype and E. coli of O78 serotype.


Subject(s)
Alkaloids , Ascomycota , Myoporum , Sesquiterpenes , Anti-Bacterial Agents/pharmacology , Ascomycota/chemistry , Escherichia coli , Formaldehyde , Indoles/pharmacology , Lactones , Molecular Structure , Myoporum/chemistry , Myoporum/microbiology , Phenols , Pyrazines
16.
Article in English | MEDLINE | ID: mdl-35958934

ABSTRACT

Intestinal injury has been regarded as an important causative factor for systemic inflammation during heatstroke, and maintaining intestinal integrity has been a potential target for the prevention of HS. Huoxiang Zhengqi Dropping Pills (HZPD) is a modern preparation of Huoxiang Zhengqi and widely used to prevent HS. The present study aims to explore the protective effect of HZDP on intestinal injury during heatstroke and analyze its potential pharmacodynamic basis. Male rats in the control and HS groups were given normal saline, and those in the HZDP groups were given HZDP (0.23, 0.46, and 0.92 g/kg) before induction of HS. Serum contents of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), intestinal fatty acid-binding protein (iFABP), and diamine oxidase (DAO) were determined using ELISA. Histopathology of intestinal injury was observed following H&E staining. The expression of claudin-3 was determined using western blot, immunohistochemistry, and immunofluorescence techniques. Moreover, network pharmacological tools were used to analyze the potential pharmacodynamic basis and the mechanism of HZDP. Treatment with HZDP significantly prolonged the time to reach Tc. Compared with the control group, the contents of TNF-α, IL-6, iFABP, and DAO in HS rats increased markedly. HZDP treatments reduced these levels significantly, and the effects in the middle dose group (0.46 g/kg) were most obvious. HZDP also attenuated intestinal injury and significantly reversed the decrease in claudin-3 expression. Bioinformatics analysis suggested that 35 active ingredients and 128 target genes of HZDP were screened from TCMSP and 93 target genes intersected with heatstroke target genes, which were considered potential therapeutic targets. TNF-α and IL-6 were the main inflammatory target genes of HZDP correlated with HS. These results indicated that HZDP effectively protected intestinal barrier function and prevented acute intestinal injury by increasing the expression of claudin-3 in rats, eventually improving heat resistance.

17.
J Hazard Mater ; 437: 129235, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35897168

ABSTRACT

Herein we reported the first example of preparing α-MnO2 by selective acid etching from Mn-containing spinel. The defects, facet, and surface area of α-MnO2 were cooperatively engineered by an all-in-one acid etching method to enhance the defect accessibility to the reactants. The obtained highly porous α-MnO2 nanorods have rich defects of Mn3+ (24.9%) and oxygen vacancies (31.4%), mainly active crystal facets of (110), and an ultrahigh surface area of 271.1 m2/g. With α-MnO2 nanorods as the catalysts, more than 90.9% of 4-chlorophenol can be degraded within 12 min by catalytic ozonation in a wide work pH of 4.5-10.5. The experiments and DFT theory calculations reveal that α-MnO2 with (110) facet promotes the adsorption and activation of ozone directly over the defects or indirectly over H2O adsorbed on the defects. Thus, more reactive oxygen species (e.g., •OH, •O2-, 1O2, surface *O) are generated and get involved in pollutant degradation. This work provides a facile method to maximize the defect accessibility, and a deeper mechanistic study to understand the roles of the defects.

18.
Chin J Nat Med ; 20(7): 537-540, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35907652

ABSTRACT

Four new diphenyl ethers, named epicoccethers K-N (1-4), were purified from the fermentation medium of a fungus Epicoccum sorghinum derived from Myoporum bontioides, and identified through HR-ESI-MS and NMR spectral analysis. Except that compound 1 showed moderate antifungal activity against Penicillium italicum and Fusarium graminearum, the other three compounds showed stronger activity against them than triadimefon. All of them showed moderate or weak antibacterial activity towards Staphylococcus aureus and Escherichia coli with O6 and O78 serotypes except that 3 was inactive to E. coli O6.


Subject(s)
Ascomycota , Escherichia coli , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Microbial Sensitivity Tests , Molecular Structure , Phenyl Ethers/chemistry
19.
Molecules ; 27(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35684380

ABSTRACT

Three-dimensional (3D) bioprinting is one of the most promising additive manufacturing technologies for fabricating various biomimetic architectures of tissues and organs. In this context, the bioink, a critical element for biofabrication, is a mixture of biomaterials and living cells used in 3D printing to create cell-laden structures. Recently, decellularized extracellular matrix (dECM)-based bioinks derived from natural tissues have garnered enormous attention from researchers due to their unique and complex biochemical properties. This review initially presents the details of the natural ECM and its role in cell growth and metabolism. Further, we briefly emphasize the commonly used decellularization treatment procedures and subsequent evaluations for the quality control of the dECM. In addition, we summarize some of the common bioink preparation strategies, the 3D bioprinting approaches, and the applicability of 3D-printed dECM bioinks to tissue engineering. Finally, we present some of the challenges in this field and the prospects for future development.


Subject(s)
Bioprinting , Bioprinting/methods , Decellularized Extracellular Matrix , Extracellular Matrix/metabolism , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
20.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(4): 447-453, 2022 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-35527423

ABSTRACT

Tofacitinib is a Janus kinase inhibitor and can block the Janus kinase-signal transducer and activator of transcription signal transduction pathway and reduce the production and release of a variety of cytokines. It has great potential in the treatment of various rheumatic diseases with a rapid onset of action and can reduce corticosteroid dependence and related adverse events. The therapeutic effect of tofacitinib in adult patients has been confirmed, and it has been increasingly used in pediatric patients in recent years. This article reviews the clinical application of tofacitinib in the treatment of pediatric autoimmune diseases.


Subject(s)
Piperidines , Rheumatic Diseases , Adult , Child , Humans , Janus Kinases/metabolism , Piperidines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Rheumatic Diseases/chemically induced , Rheumatic Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...