Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Poult Sci ; 103(9): 103989, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981362

ABSTRACT

Protein arginine methyltransferases (PRMTs) in mammals play a role in various signaling pathways, such as virus infection, inflammasome responses, and cancer growth. While some PRMTs have been found to regulate interferon production in mammals, the mechanism in chickens remains to be fully understood. This study focused on investigating the function of chicken PRMTs. Our findings indicate that chicken PRMTs act as inhibitors of interferon production in response to dsRNA or MDA5 stimulation. Each PRMT is involved in different stages of interferon induction through the MDA5-MAVS-TBK1 pathway. Furthermore, we observed the colocalization of multiple PRMTs with the viral protein VP3 of infectious bursal disease virus (IBDV). Among the chicken PRMTs studied, PRMT3 was found to be widely expressed in various organs and its expression was upregulated during IBDV infection. Notably, PRMT3 supported IBDV replication, as demonstrated by ectopic expression and inhibition studies using SGC-707. Silencing of PRMT3 led to enhanced interferon production and inhibition of IBDV replication. This study provides novel insights into the role of chicken PRMTs, particularly PRMT3, in promoting IBDV replication by suppressing interferon signaling.


Subject(s)
Avian Proteins , Chickens , Infectious bursal disease virus , Poultry Diseases , Protein-Arginine N-Methyltransferases , Virus Replication , Animals , Infectious bursal disease virus/physiology , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Avian Proteins/genetics , Avian Proteins/metabolism , Poultry Diseases/virology , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology
2.
Poult Sci ; 103(7): 103833, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810563

ABSTRACT

The family of cell cycle-dependent kinases (CDKs) serves as catalytic subunits within protein kinase complexes, playing a crucial role in cell cycle progression. While the function of CDK proteins in regulating mammalian innate immune responses and virus replication is well-documented, their role in chickens remains unclear. To address this, we cloned several chicken CDKs, specifically CDK6 through CDK10. We observed that CDK6 is widely expressed across various chicken tissues, with localization in the cytoplasm, nucleus, or both in DF-1 cells. In addition, we also found that multiple chicken CDKs negatively regulate IFN-ß signaling induced by chicken MAVS or chicken STING by targeting different steps. Moreover, during infection with infectious bursal disease virus (IBDV), various chicken CDKs, except CDK10, were recruited and co-localized with viral protein VP1. Interestingly, overexpression of CDK6 in chickens significantly enhanced IBDV replication. Conversely, knocking down CDK6 led to a marked increase in IFN-ß production, triggered by chMDA5. Furthermore, targeting endogenous CDK6 with RNA interference substantially reduced IBDV replication. These findings collectively suggest that chicken CDKs, particularly CDK6, act as suppressors of IFN-ß production and play a facilitative role in IBDV replication.


Subject(s)
Avian Proteins , Chickens , Cyclin-Dependent Kinases , Virus Replication , Animals , Chickens/genetics , Avian Proteins/metabolism , Avian Proteins/genetics , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Infectious bursal disease virus/physiology , Poultry Diseases/virology , Poultry Diseases/metabolism , Poultry Diseases/genetics , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology , Immunity, Innate
3.
Front Microbiol ; 14: 1279630, 2023.
Article in English | MEDLINE | ID: mdl-37869660

ABSTRACT

Although the bacterial composition of boar ejaculate has been extensively studied, the bacterial composition of extended boar semen is often overlooked, despite the potential risks these microorganisms may pose to the long-term preservation of extended boar semen at 15-17°C. In this study, we characterized the bacterial community composition of extended semen and discovered that Pseudomonas spp. was the dominant flora. The dominant strains were further isolated and identified as a potential new species in the Pseudomonas fluorescens group and named GXZC strain, which had adverse effects on sperm quality and was better adapted to growth at 17°C. Antimicrobial susceptibility testing showed that the GXZC strain was resistant to all commonly used veterinary antibiotics. Whole-genome sequencing (WGS) and genome annotation revealed the large genetic structure and function [7,253,751 base pairs and 6,790 coding sequences (CDSs)]. Comparative genomic analysis with the closest type strains showed that the GXZC strain predicted more diversity of intrinsic and acquired resistance genes to multi-antimicrobial agents. Taken together, our study highlights a problem associated with the long-term storage of extended boar semen caused by a P. fluorescens group strain with unique biological characteristics. It is essential to develop a new antibacterial solution for the long-term preservation of boar semen.

SELECTION OF CITATIONS
SEARCH DETAIL