Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Eur J Nutr ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814365

ABSTRACT

IMPORTANCE: Epidemiological evidences regarding the association between whole grain intake and the risk of new-onset hypertension are still controversial. OBJECTIVE: We aimed to investigate the relationship between whole grain intake and new-onset hypertension and examine possible effect modifiers in the general population. METHODS: A total of 10,973 participants without hypertension from the China Health and Nutrition Survey were enrolled, with follow-up beginning in 1997 and ending in 2015. Whole grain intake was assessed by 3 consecutive 24-h dietary recalls combined with a household food inventory. Multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards regression model after adjusting for potential risk factors. RESULTS: During a median follow-up of 7.0 years, 3,733 participants developed new-onset hypertension. The adjusted HRs (95% CIs) were as follows: for quartile 2 (HR: 0.52; 95% CI: 0.47-0.57), quartile 3 (HR: 0.46; 95% CI: 0.42-0.51), and quartile 4 (HR: 0.35; 95% CI: 0.31-0.38), compared with quartile 1. Different types of whole grain types, including wheat (adjusted HR, 0.35; 95% CI, 0.32-0.39), maize (adjusted HR, 0.50; 95% CI, 0.42-0.59), and millet (adjusted HR, 0.38; 95% CI, 0.30-0.48), showed significant associations with a reduced risk of hypertension. The association between whole grain intake and new-onset hypertension was stronger in individuals with older age (P for interaction < 0.001) and higher BMI (P for interaction < 0.001). CONCLUSION: Higher consumption of whole grains was significantly associated with a lower risk of new-onset hypertension. This study provides further evidence supporting the importance of increasing whole grain intake for hypertension prevention among Chinese adults.

2.
Nat Commun ; 15(1): 2905, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575613

ABSTRACT

Two-dimensional materials with ultrahigh in-plane thermal conductivity are ideal for heat spreader applications but cause significant thermal contact resistance in complex interfaces, limiting their use as thermal interface materials. In this study, we present an interfacial phonon bridge strategy to reduce the thermal contact resistance of boron nitride nanosheets-based composites. By using a low-molecular-weight polymer, we are able to manipulate the alignment of boron nitride nanosheets through sequential stacking and cutting, ultimately achieving flexible thin films with a layer of arc-like structure superimposed on perpendicularly aligned ones. Our results suggest that arc-like structure can act as a phonon bridge to lower the contact resistance by 70% through reducing phonon back-reflection and enhancing phonon coupling efficiency at the boundary. The resulting composites exhibit ultralow thermal contact resistance of 0.059 in2 KW-1, demonstrating effective cooling of fast-charging batteries at a thickness 2-5 times thinner than commercial products.

3.
J Nutr ; 154(4): 1262-1270, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367806

ABSTRACT

BACKGROUND: The relationship between whole grain intake and chronic kidney disease (CKD) remains uncertain. OBJECTIVE: This study aimed to evaluate the association between whole grain intake and risk of CKD in Chinese adults. METHODS: The present cross-sectional study used data from the China Health and Nutrition Survey conducted in 2009. Whole grain intake was measured using 3 consecutive 24-h dietary recalls and a household food inventory. A multivariable logistic regression model was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for risk of CKD. In addition, a restricted cubic spline was used to investigate the dose‒response relationship between whole grain and risk of CKD. RESULTS: A total of 6747 participants were included, 728 of whom had CKD. Compared with those in the lowest whole grain intake group, those in the higher grain intake group had an inverse association with risk of CKD (Q2: adjusted OR 0.70, 95% CI: 0.54, 0.89; Q3: adjusted OR 0.54, 95% CI: 0.42, 0.69; and Q4: adjusted OR 0.29, 95% CI: 0.21, 0.41). The association between whole grain intake and CKD seems to be stronger for individuals who were male (P for interaction = 0.008) or smokers (P for interaction = 0.013). In addition, the restricted cubic spline suggested an obvious L-shaped correlation. CONCLUSIONS: Increased whole grain intake was associated with a decreased risk of CKD in Chinese adults.


Subject(s)
Renal Insufficiency, Chronic , Whole Grains , Adult , Humans , Male , Female , Cross-Sectional Studies , Renal Insufficiency, Chronic/epidemiology , Diet , Nutrition Surveys
4.
Int J Biol Macromol ; 262(Pt 2): 130131, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354937

ABSTRACT

Deleted in breast cancer 1 (DBC1) is a human nuclear protein that modulates the activities of various proteins involved in cell survival and cancer progression. Oxidized form of nicotinamide adenine dinucleotide (NAD+) is suggested to bind to the Nudix homology domains (NHDs) of DBC1, thereby regulating DBC1-Poly (ADP-ribose) polymerase 1 (PARP1) interactions, resulting in the restoration of DNA repair. Using Nuclear Magnetic Resonance (NMR) and Isothermal Titration Calorimetry (ITC), we confirmed NAD+ and its precursor nicotinamide mononucleotide (NMN) both bind the NHD domain of DBC1 (DBC1354-396). NAD+ likely interacts with DBC1354-396 through hydrogen bonding, with a binding affinity (8.99 µM) nearly twice that of NMN (17.0 µM), and the key binding sites are primarily residues E363 and D372, in the agreement with Molecular Docking experiments. Molecular Dynamics (MD) simulation further demonstrated E363 and D372's anchoring role in the binding process. Additional mutagenesis experiments of E363 and D372 confirmed their critical involvement of ligand-protein interactions. These findings lead to a better understanding of how NAD+ and NMN regulate DBC1, thereby offering insights for the development of targeted therapies and drug research focused on DBC1-associated tumors.


Subject(s)
DNA Repair , NAD , Humans , NAD/metabolism , Molecular Docking Simulation , Cell Survival , Binding Sites
5.
Nanomicro Lett ; 16(1): 25, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985516

ABSTRACT

Hexagonal boron nitride nanosheets (BNNSs) exhibit remarkable thermal and dielectric properties. However, their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride, thereby limiting their performance in applications such as thermal management. In this study, we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation. The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath. Notably, the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers, primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process. With a BNNSs loading of 60 wt%, the resulting coaxial fibers showed exceptional properties, including an ultrahigh Herman orientation parameter of 0.81, thermal conductivity of 17.2 W m-1 K-1, and tensile strength of 192.5 MPa. These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers, making them highly suitable for applications such as wearable thermal management textiles. Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs.

6.
Nano Lett ; 23(12): 5555-5561, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37315026

ABSTRACT

Ion adsorption within nanopores is involved in numerous applications. However, a comprehensive understanding of the fundamental relationship between in-pore ion concentration and pore size, particularly in the sub-2 nm range, is scarce. This study investigates the ion-species-dependent concentration in multilayered graphene membranes (MGMs) with tunable nanoslit sizes (0.5-1.6 nm) using nuclear magnetic resonance and computational simulations. For Na+-based electrolytes in MGMs, the concentration of anions in graphene nanoslits increases in correlation with their chaotropic properties. As the nanoslit size decreases, the concentration of chaotropic ion (BF4-) increases, whereas the concentration of kosmotropic ions (Cit3-, PO43-) and other ions (Ac-, F-) decreases or changes slightly. Notably, anions remain more concentrated than counter Na+ ions, leading to electroneutrality breakdown and unipolar anion packing in MGMs. A continuum modeling approach, integrating molecular dynamic simulation with the Poisson-Boltzmann model, elucidates these observations by considering water-mediated ion-graphene non-electrostatic interactions and charge screening from graphene walls.

7.
ACS Nano ; 17(5): 5072-5082, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36802483

ABSTRACT

Assembling two-dimensional (2D) nanomaterials into laminar membranes with a subnanometer (subnm) interlayer spacing provides a material platform for studying a range of nanoconfinement effects and exploring the technological applications related to the transport of electrons, ions and molecules. However, the strong tendency for 2D nanomaterials to restack to their bulk crystalline-like structure makes it challenging to control their spacing at the subnm scale. It is thus necessary to understand what nanotextures can be formed at the subnm scale and how they can be engineered experimentally. In this work, with dense reduced graphene oxide membranes as a model system, we combine synchrotron-based X-ray scattering and ionic electrosorption analysis to reveal that their subnanometric stacking can result in a hybrid nanostructure of subnm channels and graphitized clusters. We demonstrate that the ratio of these two structural units, their sizes and connectivity can be engineered by stacking kinetics through the reduction temperature to allow the realization of high-performance compact capacitive energy storage. This work highlights the great complexity of subnm stacking of 2D nanomaterials and provides potential methods to engineer their nanotextures at will.

8.
Insights Imaging ; 14(1): 28, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36746892

ABSTRACT

BACKGROUND: To develop and validate an MRI texture-based machine learning model for the noninvasive assessment of renal function. METHODS: A retrospective study of 174 diabetic patients (training cohort, n = 123; validation cohort, n = 51) who underwent renal MRI scans was included. They were assigned to normal function (n = 71), mild or moderate impairment (n = 69), and severe impairment groups (n = 34) according to renal function. Four methods of kidney segmentation on T2-weighted images (T2WI) were compared, including regions of interest covering all coronal slices (All-K), the largest coronal slices (LC-K), and subregions of the largest coronal slices (TLCO-K and PIZZA-K). The speeded-up robust features (SURF) and support vector machine (SVM) algorithms were used for texture feature extraction and model construction, respectively. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance of models. RESULTS: The models based on LC-K and All-K achieved the nonsignificantly highest accuracy in the classification of renal function (all p values > 0.05). The optimal model yielded high performance in classifying the normal function, mild or moderate impairment, and severe impairment, with an area under the curve of 0.938 (95% confidence interval [CI] 0.935-0.940), 0.919 (95%CI 0.916-0.922), and 0.959 (95%CI 0.956-0.962) in the training cohorts, respectively, as well as 0.802 (95%CI 0.800-0.807), 0.852 (95%CI 0.846-0.857), and 0.863 (95%CI 0.857-0.887) in the validation cohorts, respectively. CONCLUSION: We developed and internally validated an MRI-based machine-learning model that can accurately evaluate renal function. Once externally validated, this model has the potential to facilitate the monitoring of patients with impaired renal function.

9.
Adv Mater ; 35(15): e2210809, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36740642

ABSTRACT

While photoluminescent graphene quantum dots (GQDs) have long been considered very suitable for bioimaging owing to their protein-like size, superhigh photostability and in vivo long-term biosafety, their unique and crucial bioimaging applications in vivo remain unreachable. Herein, planted GQDs are presented as an excellent tool for in vivo fluorescent, sustainable and multimodality tumor bioimaging in various scenarios. The GQDs are in situ planted in the poly(ethylene glycol) (PEG) layer of PEGylated nanoparticles via a bottom-up molecular approach to obtain the NPs-GQDs-PEG nanocomposite. The planted GQDs show more than four times prolonged blood circulation and 7-8 times increased tumor accumulation than typical GQDs in vivo. After accessible specificity modification, the multifunctional NPs-GQDs-PEG provides targeted, multimodal molecular imaging for various tumor models in vitro or in vivo. Moreover, the highly photostable GQDs enable long-term, real-time visualization of the local pharmacokinetics of NPs in vivo. Planting GQDs in PEGylated nanomedicine offers a new strategy for broad in vivo biomedical applications of GQDs.


Subject(s)
Graphite , Neoplasms , Quantum Dots , Humans , Diagnostic Imaging/methods , Polyethylene Glycols , Neoplasms/diagnostic imaging
10.
Emerg Med Int ; 2022: 4842370, 2022.
Article in English | MEDLINE | ID: mdl-36204334

ABSTRACT

Objectives: To investigate the effects of transcatheter arterial chemoembolization (TACE) combined with radiofrequency ablation (RFA) on liver function and immune function in patients with hepatocellular carcinoma (HCC). Methods: From December 2016 to January 2019, patients with primary liver cancer who could not be operated on were selected as the study subjects. 170 patients were randomly divided into two groups. The control group was treated with transcatheter arterial chemoembolization (n = 85). The patients in the observation group were treated with transcatheter arterial chemoembolization combined with radiofrequency ablation (n = 85). The clinical effects of the two groups were analyzed. The changes of liver function and immune function were detected by automatic biochemical analyzer before and after treatment. The changes of hypoxia inducible factor-1 (HIF1) alpha and vascular endothelial growth factor (VEGF) levels before and after treatment were analyzed by enzyme-linked immunosorbent assay (ELISA). Results: The total effective rate in the observation group was significantly higher than that in the control group (P < 0.05). After treatment, serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), CD8+, HIF1 alpha, and VEGF decreased significantly (P < 0.05), while levels of total bilirubin, direct bilirubin, indirect bilirubin, CD3+, CD4+, and CD4+/CD8+ increased significantly (P < 0.05). The changes of the above indexes in the observation group were more significant than those in the control group (P < 0.05). Conclusion: Hepatic arterial chemoembolization combined with radiofrequency ablation has a significant effect on liver function and immune function in patients with liver cancer, which may be related to the abnormal levels of HIF1α and vascular endothelial growth factor.

11.
Nanoscale ; 14(42): 15845-15858, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36259692

ABSTRACT

The electrical and biological interfacial properties of invasive electrodes have a significant impact on the performance and longevity of neural recordings in the brain. In this study, we demonstrated rapid electrophoretic deposition and electrochemical reduction of graphene oxide (GO) on metal-based neural electrodes. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and other characterizations confirmed the existence of a uniform and effectively reduced graphene oxide coating. Electrochemically reduced graphene oxide (ErGO) coated Pt/Ir neural electrodes exhibited 15.2-fold increase in charge storage capacity (CSC) and 90% decrease in impedance with only 3.8% increase in electrode diameter. Patch clamp electrophysiology and calcium imaging of primary rat hippocampus neurons cultured on ErGO demonstrated that there was no adverse impact on the functional development of neurons. Immunostaining showed a balanced growth of excitatory and inhibitory neurons, and astrocytes. Acute recordings from the auditory cortex and chronic recordings (19 days) from the somatosensory cortex found ErGO coating improved the performance of neural electrodes in signal-to-noise ratio (SNR) and amplitude of signals. The proposed approach not only provides an in-depth evaluation of the effect of ErGO coating on neural electrodes but also widens the coating methods of commercial neural electrodes.


Subject(s)
Graphite , Animals , Rats , Graphite/chemistry , Electrodes , Photoelectron Spectroscopy , Electrophoresis
12.
Insights Imaging ; 13(1): 174, 2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36308637

ABSTRACT

Traumatic bone marrow lesions (TBMLs) are considered to represent a range of concealed bone injuries, including haemorrhage, infarction, and localised oedema caused by trabecular microfracture occurring in the cancellous bone. If TBMLs are not managed timeously, they potentially cause a series of complications that can lead to irreversible morbidity and prolonged recovery time. This article reviews interesting image findings of bone marrow lesions in dual-energy computed tomography (DECT). In addition to combining the benefits of traditional CT imaging, DECT also reveals and identifies various structures using diverse attenuation characteristics of different radiographic spectra. Therefore, DECT has the capacity to detect TBMLs, which have traditionally been diagnosed using MRI. Through evaluating DECT virtual non-calcium maps, the detection of TBMLs is rendered easier and more efficient in some acute accidents.

13.
Small Methods ; 6(11): e2200806, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36148863

ABSTRACT

The recent emergence of electrically conductive nanoporous membranes based on graphene and other 2D materials opens up new opportunities to revisit some longstanding nanoconfined ion transport problems under electrification. This work probes the ionic resistance in electrified multilayered graphene membranes with electrochemical impedance spectroscopy. This study demonstrates that the combination of additive-free feature and tunable slit pore sizes in the sub-10 nm range in graphene-based membranes has made it possible to deconvolute the different ionic processes from the impedance obtained and examine the exclusive influence of pore size on the ionic resistance in a quantitative manner. The trends revealed for the ionic resistance at the pore entrance and inside the pores under severe nanoconfinement (<2 nm) are found to be generally consistent with the microscale theoretical simulations previously reported. It also allows a quantitative analysis of the relative effects of the external polarization potential and ion identity under nanoconfinement. The results suggest that the classic electrochemical impedance spectroscopy technique, when applied to appropriate nanoporous electrode materials, can provide rich information about nanoconfined ion transport phenomena under electrification for fundamental understanding and application development.

15.
Eur J Nucl Med Mol Imaging ; 49(13): 4427-4439, 2022 11.
Article in English | MEDLINE | ID: mdl-35925443

ABSTRACT

PURPOSE: Accurate identification of nodal status enables adequate neck irradiation for nasopharyngeal carcinoma (NPC). However, most conventional techniques are unable to pick up occult metastases, leading to underestimation of tumor extensions. Here we investigate the clinical significance of carbonic anhydrase IX (CAIX) in human NPC samples, and develop a CAIX-targeted imaging strategy to identify occult lymph node metastases (LNMs) and extranodal extension (ENE) in animal studies. METHODS: A total of 211 NPC samples are performed CAIX staining, and clinical outcomes are analyzed. The metastatic murine models are generated by foot pad injection of NPC cells, and a CAIX-targeted imaging agent (CAIX-800) is intravenously administered. We adopt fluorescence molecular tomography and ultrasonography (US)-guided spectroscopic photoacoustic (sPA) imaging to perform in vivo studies. Histological and immunohistochemical characterization are carried out via node-by-node analysis. RESULTS: For clinical samples, 90.1% (91/101) primary tumors, 73.3% (66/90) metastases, and 100% (20/20) local recurrences are CAIX positive. In metastases group, 84.7% (61/72) nodal metastases and 22.2% (4/18) organ metastases are CAIX positive. CAIX expression in primary tumors is significantly associated with NPC stage and prognosis. For animal studies, CAIX-800-based fluorescence imaging achieves 81.3% sensitivity and 93.8% specificity in detecting occult LNMs in vivo, with a minimum detectable diameter of 1.7 mm. Coupled with CAIX-800, US-guided sPA imaging could not only detect subcapsular deposits of metastatic cancer cells 2 weeks earlier than conventional techniques, but also successfully track pathological ENE. CONCLUSION: CAIX remarkably expresses in human NPCs and stratifies patient prognosis. In preclinical studies, CAIX-800-based imaging successfully identifies occult LNMs and tracks early stage of pathological ENE. This attractive method shows potential in clinic, allowing medical workers to longitudinally monitor nodal status and helping to reduce unnecessary nodal biopsy for patients with NPC. The schematic diagram for the study. CAIX, carbonic anhydrase IX; NPC, nasopharyngeal carcinoma; US, ultrasonography; sPA, spectroscopic photoacoustic.


Subject(s)
Carbonic Anhydrases , Nasopharyngeal Neoplasms , Humans , Mice , Animals , Carbonic Anhydrase IX/metabolism , Nasopharyngeal Carcinoma/diagnostic imaging , Carbonic Anhydrases/analysis , Carbonic Anhydrases/metabolism , Biomarkers, Tumor/metabolism , Prognosis , Antigens, Neoplasm/analysis , Lymphatic Metastasis , Nasopharyngeal Neoplasms/diagnostic imaging , Models, Animal
16.
Liver Int ; 42(11): 2562-2576, 2022 11.
Article in English | MEDLINE | ID: mdl-36017822

ABSTRACT

Tumour recurrence and drug resistance in hepatocellular carcinoma remain challenging. Cancer stem cells (CSCs) are responsible for tumour initiation because of their stemness characteristics. CSCs accounting for drug resistance and tumour relapse are promising therapeutic targets. We report that Abelson interactor 2 (ABI2) is a novel therapeutic target of HCC CSCs. First, ABI2 was upregulated in HCC tissues compared with liver tissues and was associated with tumour size, pathological grade, liver cirrhosis, worse prognosis and a high recurrence rate. Functional studies illustrate that ABI2 knockdown suppresses cell growth, migration, invasion and sorafenib resistance in vitro. Furthermore, ABI2 knockdown inhibited HCC sphere formation and decreased the CD24+ , CD133+ and CD326+ CSCs populations, suggesting the suppression of HCC stemness characteristics. A tumour xenograft model and limiting dilution assay demonstrated the inhibition of tumorigenicity and tumour initiation. Moreover, molecular mechanism studies showed that ABI2 recruits and directly interacts with the transcription factor MEOX2, which binds to the KLF4 and NANOG promoter regions to activate their transcription. Furthermore, overexpression of MEOX2 restored HCC malignant behaviour and the CSC population. The ABI2-mediated transcriptional axis MEOX2/KLF4-NANOG promotes HCC growth, metastasis and sorafenib resistance by maintaining the CSC population, suggesting that ABI2 is a promising CSC target in HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cell Transformation, Neoplastic/pathology , Homeodomain Proteins/metabolism , Homeodomain Proteins/therapeutic use , Humans , Kruppel-Like Factor 4/metabolism , Liver Neoplasms/drug therapy , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/pathology , Sorafenib/pharmacology , Sorafenib/therapeutic use , Transcription Factors
17.
Adv Healthc Mater ; 11(20): e2201471, 2022 10.
Article in English | MEDLINE | ID: mdl-35899802

ABSTRACT

Eardrum perforation and associated hearing loss is a global health problem. Grafting perforated eardrum with autologous tissues in clinic can restore low-frequency hearing but often leaves poor recovery of high-frequency hearing. In this study, the potential of incorporating a thin multilayered graphene membrane (MGM) into the eardrum for broadband hearing recovery in rats is examined. The MGM shows good biocompatibility and biostability to promote the growth of eardrum cells in a regulated manner with little sign of tissue rejection and inflammatory response. After three weeks of implantation, the MGM is found to be encapsulated by a thin layer of newly grown tissue on both sides without a significant folded overgrowth that is often seen in natural healing. The perforation is well sealed, and broadband hearing recovery (1-32 kHz) is enabled and maintained for at least 2 months. Mechanical simulations show that the high elastic modulus of MGM and thin thickness of the reconstructed eardrum play a critical role in the recovery of high-frequency hearing. This work demonstrates the promise of the use of MGM as a functional graft for perforated eardrum to recover hearing in the broadband frequency region and suggests a new acoustics-related medical application for graphene-related 2D materials.


Subject(s)
Graphite , Tympanic Membrane Perforation , Animals , Rats , Tympanic Membrane/physiology , Hearing/physiology , Acoustics
18.
Cancer Imaging ; 22(1): 23, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35549776

ABSTRACT

BACKGROUND: Transcatheter arterial chemoembolization (TACE) is the mainstay of therapy for intermediate-stage hepatocellular carcinoma (HCC); yet its efficacy varies between patients with the same tumor stage. Accurate prediction of TACE response remains a major concern to avoid overtreatment. Thus, we aimed to develop and validate an artificial intelligence system for real-time automatic prediction of TACE response in HCC patients based on digital subtraction angiography (DSA) videos via a deep learning approach. METHODS: This retrospective cohort study included a total of 605 patients with intermediate-stage HCC who received TACE as their initial therapy. A fully automated framework (i.e., DSA-Net) contained a U-net model for automatic tumor segmentation (Model 1) and a ResNet model for the prediction of treatment response to the first TACE (Model 2). The two models were trained in 360 patients, internally validated in 124 patients, and externally validated in 121 patients. Dice coefficient and receiver operating characteristic curves were used to evaluate the performance of Models 1 and 2, respectively. RESULTS: Model 1 yielded a Dice coefficient of 0.75 (95% confidence interval [CI]: 0.73-0.78) and 0.73 (95% CI: 0.71-0.75) for the internal validation and external validation cohorts, respectively. Integrating the DSA videos, segmentation results, and clinical variables (mainly demographics and liver function parameters), Model 2 predicted treatment response to first TACE with an accuracy of 78.2% (95%CI: 74.2-82.3), sensitivity of 77.6% (95%CI: 70.7-84.0), and specificity of 78.7% (95%CI: 72.9-84.1) for the internal validation cohort, and accuracy of 75.1% (95% CI: 73.1-81.7), sensitivity of 50.5% (95%CI: 40.0-61.5), and specificity of 83.5% (95%CI: 79.2-87.7) for the external validation cohort. Kaplan-Meier curves showed a significant difference in progression-free survival between the responders and non-responders divided by Model 2 (p = 0.002). CONCLUSIONS: Our multi-task deep learning framework provided a real-time effective approach for decoding DSA videos and can offer clinical-decision support for TACE treatment in intermediate-stage HCC patients in real-world settings.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Deep Learning , Liver Neoplasms , Angiography, Digital Subtraction , Artificial Intelligence , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/therapy , Chemoembolization, Therapeutic/methods , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Retrospective Studies , Treatment Outcome
19.
Small Methods ; 6(5): e2200022, 2022 05.
Article in English | MEDLINE | ID: mdl-35261208

ABSTRACT

Stiffness and viscoelasticity of neural implants regulate the foreign body response. Recent studies have suggested the use of elastic or viscoelastic materials with tissue-like stiffness for long-term neural electrical interfacing. Herein, the authors find that a viscoelastic multilayered graphene hydrogel (MGH) membrane, despite exhibiting a much higher Young's modulus than nerve tissues, shows little inflammatory response after 8-week implantation in rat sciatic nerves. The MGH membrane shows significant viscoelasticity due to the slippage between graphene nanosheets, facilitating its seamless yet minimally compressive interfacing with nerves to reduce the inflammation caused by the stiffness mismatch. When used as neural stimulation electrodes, the MGH membrane can offer abundant ion-accessible surfaces to bring a charge injection capacity 1-2 orders of magnitude higher than its traditional Pt counterpart, and further demonstrates chronic neural therapy potential in low-voltage modulation of rat blood pressure. This work suggests that the emergence of 2D nanomaterials and particularly their unique structural attributes can be harnessed to enable new bio-interfacing design strategies.


Subject(s)
Graphite , Hydrogels , Animals , Elastic Modulus , Electrodes , Graphite/chemistry , Hydrogels/therapeutic use , Rats , Viscosity
20.
Org Biomol Chem ; 19(38): 8254-8258, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34523663

ABSTRACT

The electrochemical α-cyanation of tertiary and secondary amines has been developed by using a cheap cyanide reagent, azobisisobutyronitrile (AIBN). The CN radical, generated through n-Bu4NBr-meidated electrochemical oxidation, participates in a novel α-cyanation reaction under exogenous oxidant-free conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...