Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Virulence ; 15(1): 2322961, 2024 12.
Article in English | MEDLINE | ID: mdl-38443331

ABSTRACT

Gram-negative Bartonella species are facultative intracellular bacteria that can survive in the harsh intracellular milieu of host cells. They have evolved strategies to evade detection and degradation by the host immune system, which ensures their proliferation in the host. Following infection, Bartonella alters the initial immunogenic surface-exposed proteins to evade immune recognition via antigen or phase variation. The diverse lipopolysaccharide structures of certain Bartonella species allow them to escape recognition by the host pattern recognition receptors. Additionally, the survival of mature erythrocytes and their resistance to lysosomal fusion further complicate the immune clearance of this species. Certain Bartonella species also evade immune attacks by producing biofilms and anti-inflammatory cytokines and decreasing endothelial cell apoptosis. Overall, these factors create a challenging landscape for the host immune system to rapidly and effectively eradicate the Bartonella species, thereby facilitating the persistence of Bartonella infections and creating a substantial obstacle for therapeutic interventions. This review focuses on the effects of three human-specific Bartonella species, particularly their mechanisms of host invasion and immune escape, to gain new perspectives in the development of effective diagnostic tools, prophylactic measures, and treatment options for Bartonella infections.


Subject(s)
Bartonella Infections , Bartonella , Humans , Immune Evasion , Apoptosis , Biofilms , Membrane Proteins
2.
Infect Immun ; 92(2): e0024823, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38205952

ABSTRACT

The immune response to Mycoplasma pneumoniae infection plays a key role in clinical symptoms. Previous investigations focused on the pro-inflammatory effects of leukocytes and the pivotal role of epithelial cell metabolic status in finely modulating the inflammatory response have been neglected. Herein, we examined how glycolysis in airway epithelial cells is affected by M. pneumoniae infection in an in vitro model. Additionally, we investigated the contribution of ATP to pulmonary inflammation. Metabolic analysis revealed a marked metabolic shift in bronchial epithelial cells during M. pneumoniae infection, characterized by increased glucose uptake, enhanced aerobic glycolysis, and augmented ATP synthesis. Notably, these metabolic alterations are orchestrated by adaptor proteins, MyD88 and TRAM. The resulting synthesized ATP is released into the extracellular milieu via vesicular exocytosis and pannexin protein channels, leading to a substantial increase in extracellular ATP levels. The conditioned medium supernatant from M. pneumoniae-infected epithelial cells enhances the secretion of both interleukin (IL)-1ß and IL-18 by peripheral blood mononuclear cells, partially mediated by the P2X7 purine receptor (P2X7R). In vivo experiments confirm that addition of a conditioned medium exacerbates pulmonary inflammation, which can be attenuated by pre-treatment with a P2X7R inhibitor. Collectively, these findings highlight the significance of airway epithelial aerobic glycolysis in enhancing the pulmonary inflammatory response and aiding pathogen clearance.


Subject(s)
Pneumonia, Mycoplasma , Humans , Mycoplasma pneumoniae , Leukocytes, Mononuclear/metabolism , Culture Media, Conditioned , Epithelial Cells/microbiology , Lung/metabolism , Interleukin-1beta/metabolism , Adenosine Triphosphate
3.
Mol Microbiol ; 121(4): 814-830, 2024 04.
Article in English | MEDLINE | ID: mdl-38293733

ABSTRACT

Mycoplasma belong to the genus Mollicutes and are notable for their small genome sizes (500-1300 kb) and limited biosynthetic capabilities. They exhibit pathogenicity by invading various cell types to survive as intracellular pathogens. Adhesion is a crucial prerequisite for successful invasion and is orchestrated by the interplay between mycoplasma surface adhesins and specific receptors on the host cell membrane. Invasion relies heavily on clathrin- and caveolae-mediated internalization, accompanied by multiple activated kinases, cytoskeletal rearrangement, and a myriad of morphological alterations, such as membrane invagination, nuclear hypertrophy and aggregation, cytoplasmic edema, and vacuolization. Once mycoplasma successfully invade host cells, they establish resilient sanctuaries in vesicles, cytoplasm, perinuclear regions, and the nucleus, wherein specific environmental conditions favor long-term survival. Although lysosomal degradation and autophagy can eliminate most invading mycoplasmas, some viable bacteria can be released into the extracellular environment via exocytosis, a crucial factor in the prolonging infection persistence. This review explores the intricate mechanisms by which mycoplasma invades host cells and perpetuates their elusive survival, with the aim of highlighting the challenge of eradicating this enigmatic bacterium.


Subject(s)
Mycoplasma Infections , Mycoplasma , Humans , Mycoplasma/metabolism , Mycoplasma Infections/genetics , Mycoplasma Infections/metabolism , Mycoplasma Infections/microbiology , Adhesins, Bacterial/metabolism , Endocytosis , Autophagy
4.
Virulence ; 13(1): 1270-1284, 2022 12.
Article in English | MEDLINE | ID: mdl-35892136

ABSTRACT

Airway epithelial cells function as both a physical barrier against harmful substances and pathogenic microorganisms and as an important participant in the innate immune system. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in modulating inflammatory responses during respiratory infections. However, the signalling cascade that induces MMP-9 secretion from epithelial cells infected with Mycoplasma pneumoniae remains poorly understood. In this study, we investigated the mechanism of MMP-9 secretion in airway epithelial cells infected with M. pneumoniae. Our data clearly showed that M. pneumoniae induced the secretion of MMP-9 from bronchial epithelial cells and upregulated its enzymatic activity in a time- and dose-dependent manner. Using specific inhibitors and chromatin co-precipitation experiments, we confirmed that the expression of MMP-9 is reliant on the activation of the Toll-like receptor 2 (TLR2) and TLR6-dependent mitogen-activated protein kinase/nuclear factor- κB/activator protein-1 (MAPK/NF-κB/AP-1) pathways. Additionally, epigenetic modifications such as histone acetylation and the nuclear transcription factor Sp1 also regulate MMP-9 expression. M. pneumoniae infection also decreased the expression of the tumour suppressor reversion-inducing cysteine-rich protein with Kazal motifs (RECK) by inducing Sp1 phosphorylation. Overexpression of RECK significantly impaired the M. pneumoniae-triggered increase in MMP-9 enzymatic activity, although the level of MMP-9 protein remained constant. The study demonstrated that M. pneumoniae-triggered MMP-9 expression is modulated by TLR2 and 6, the MAPK/NF-κB/AP-1 signalling cascade, and histone acetylation, and M. pneumoniae downregulated the expression of RECK, thereby increasing MMP-9 activity to modulate the inflammatory response, which could play a role in airway remodelling.


Subject(s)
GPI-Linked Proteins , Matrix Metalloproteinase 9 , Mycoplasma pneumoniae , Epithelial Cells/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Histones , Humans , Matrix Metalloproteinase 9/genetics , Mycoplasma pneumoniae/pathogenicity , NF-kappa B/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Transcription Factor AP-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...