Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 523
Filter
1.
Int J Immunopathol Pharmacol ; 38: 3946320241272550, 2024.
Article in English | MEDLINE | ID: mdl-39101927

ABSTRACT

OBJECTIVE: To explore the effect of miR-370-3p on LPS triggering, in particular its involvement in disease progression by targeting the TLR4-NLRP3-caspase-1 cellular pyroptosis pathway in macrophages. METHODS: Human macrophage RAW264.7 was divided into 6 groups: control, LPS, LPS + inhibitor-NC, LPS + miR-370-3p inhibitor, LPS + mimics-NC and LPS + miR-370-3p mimics. RT-qPCR was used to detect the expression level of miR-370-3p and analyzed comparatively. CCK-8 and flow cytometry assays were used to detect cell viability and apoptosis. ELISA assay was used to detect the levels of IL-1ß and TNF-α in the supernatant of the cells. The WB assay was used to detect TLR4, NLRP3, Caspase-1 and GSDMD levels. RESULTS: After LPS induction, macrophage miR-370-3p levels decreased, cell viability decreased, and apoptosis increased. At the same time, the levels of TLR4, NLRP3, Caspase-1 and GSDMD increased in the cells, and the levels of IL-1ß and TNF-α increased in the cell supernatant. Compared with the LPS group, the significantly higher expression level of miR-370-3p in the cells of the LPS + miR-370-3p mimics group was accompanied by significantly higher cell viability, significantly lower apoptosis rate, significantly lower levels of TLR4, NLRP3, Caspase-1, and GSDMD in the cells, and significantly lower levels of IL-1ß and TNF-α in the cell supernatant. CONCLUSION: MiR-370-3p may be involved in anti-infective immune responses by targeting and inhibiting the macrophage TLR4-NLRP3-caspase-1 cellular pyroptosis pathway.


Subject(s)
Caspase 1 , Lipopolysaccharides , Macrophages , MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Toll-Like Receptor 4 , MicroRNAs/genetics , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Humans , Caspase 1/metabolism , Caspase 1/genetics , Mice , RAW 264.7 Cells , Animals , Signal Transduction , Interleukin-1beta/metabolism , Cell Survival/drug effects , Bacterial Infections/immunology
2.
EBioMedicine ; 106: 105261, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39079340

ABSTRACT

BACKGROUND: Green space is an important part of the human living environment, with many epidemiological studies estimating its impact on human health. However, no study has quantitatively assessed the credibility of the existing evidence, impeding their translations into policy decisions and hindering researchers from identifying new research gaps. This overview aims to evaluate and rank such evidence credibility. METHODS: Following the PRISMA guideline, we systematically searched PubMed, Web of Science, and Embase databases for systematic reviews with meta-analyses concerning green spaces and health outcomes published up to January 15, 2024. We categorized the credibility of meta-analytical evidence from interventional studies into four levels (i.e., high, moderate, low, and very low) using the Grading of Recommendation, Assessment, Development and Evaluations framework, based on five domains including risk of bias, inconsistency, indirectness, imprecision, and publication bias. Further, we recalculated all the meta-analyses from observational studies and classified evidence into five levels (i.e., convincing, highly suggestive, suggestive, weak, and non-significant) by considering stringent thresholds for P-values, sample size, robustness, heterogeneity, and testing for biases. FINDINGS: In total, 154 meta-analysed associations (interventional = 44, observational = 110) between green spaces and health outcomes were graded. Among meta-analyses from interventional studies, zero, four (wellbeing, systolic blood pressure, negative affect, and positive affect), 20, and 20 associations between green spaces and health outcomes were graded as high, moderate, low, and very low credibility evidence, respectively. Among meta-analyses from observational studies, one (cardiovascular disease mortality), four (prevalence/incidence of diabetes mellitus, preterm birth, and small for gestational age infant, and all-cause mortality), 12, 22, and 71 associations were categorized as convincing, highly suggestive, suggestive, weak, and non-significant evidence, respectively. INTERPRETATION: The current evidence largely confirms beneficial associations between green spaces and human health. However, only a small subset of these associations can be deemed to have a high or convincing credibility. Hence, future better designed primary studies and meta-analyses are still needed to provide higher quality evidence for informing health promotion strategies. FUNDING: The National Natural Science Foundation of China of China; the Guangzhou Science and Technology Program; the Guangdong Medical Science and Technology Research Fund; the Research Grant Council of the Hong Kong SAR; and Sino-German mobility program.


Subject(s)
Parks, Recreational , Humans , Meta-Analysis as Topic
3.
Adv Sci (Weinh) ; 11(30): e2308461, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38884133

ABSTRACT

Type 1 diabetes (T1D) is a chronic disease characterized by self-destruction of insulin-producing pancreatic ß cells by cytotoxic T cell activity. However, the pathogenic mechanism of T cell infiltration remains obscure. Recently, tissue-resident memory T (TRM) cells have been shown to contribute to cytotoxic T cell recruitment. TRM cells are found present in human pancreas and are suggested to modulate immune homeostasis. Here, the role of TRM cells in the development of T1D is investigated. The presence of TRM cells in pancreatic islets is observed in non-obese diabetic (NOD) mice before T1D onset. Mechanistically, elevated fatty acid-binding protein 4 (FABP4) potentiates the survival and alarming function of TRM cells by promoting fatty acid utilization and C-X-C motif chemokine 10 (CXCL10) secretion, respectively. In NOD mice, genetic deletion of FABP4 or depletion of TRM cells using CD69 neutralizing antibodies resulted in a similar reduction of pancreatic cytotoxic T cell recruitment, a delay in diabetic incidence, and a suppression of CXCL10 production. Thus, targeting FABP4 may represent a promising therapeutic strategy for T1D.


Subject(s)
Chemokine CXCL10 , Diabetes Mellitus, Type 1 , Fatty Acid-Binding Proteins , Islets of Langerhans , Mice, Inbred NOD , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/genetics , Animals , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/immunology , Mice , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Chemokine CXCL10/immunology , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Memory T Cells/immunology , Memory T Cells/metabolism , Disease Models, Animal , Humans
5.
Cell Metab ; 36(6): 1269-1286.e9, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838640

ABSTRACT

Patients with metabolic dysfunction-associated steatotic liver disease (MASLD), especially advanced metabolic dysfunction-associated steatohepatitis (MASH), have an increased risk of cardiovascular diseases (CVDs). Whether CVD events will, in turn, influence the pathogenesis of MASLD remains unknown. Here, we show that myocardial infarction (MI) accelerates hepatic pathological progression of MASLD. Patients with MASLD who experience CVD events after their diagnosis exhibit accelerated liver fibrosis progression. MI promotes hepatic fibrosis in mice with MASH, accompanied by elevated circulating Ly6Chi monocytes and their recruitment to damaged liver tissues. These adverse effects are significantly abrogated when deleting these cells. Meanwhile, MI substantially increases circulating and cardiac periostin levels, which act on hepatocytes and stellate cells to promote hepatic lipid accumulation and fibrosis, finally exacerbating hepatic pathological progression of MASH. These preclinical and clinical results demonstrate that MI alters systemic homeostasis and upregulates pro-fibrotic factor production, triggering cross-disease communication that accelerates hepatic pathological progression of MASLD.


Subject(s)
Disease Progression , Mice, Inbred C57BL , Myocardial Infarction , Animals , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Humans , Mice , Male , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Monocytes/metabolism , Female , Middle Aged , Inflammation/pathology , Inflammation/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/pathology , Liver/metabolism , Cell Adhesion Molecules/metabolism
6.
Clin Transl Sci ; 17(6): e13760, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847320

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is the severe form of non-alcoholic fatty liver disease which has a high potential to progress to cirrhosis and hepatocellular carcinoma, yet adequate effective therapies are lacking. Hypoadiponectinemia is causally involved in the pathogenesis of MASH. This study investigated the pharmacological effects of adiponectin replacement therapy with the adiponectin-derived peptide ALY688 (ALY688-SR) in a mouse model of MASH. Human induced pluripotent stem (iPS) cell-derived hepatocytes were used to test cytotoxicity and signaling of unmodified ALY688 in vitro. High-fat diet with low methionine and no added choline (CDAHF) was used to induce MASH and test the effects of ALY688-SR in vivo. Histological MASH activity score (NAS) and fibrosis score were determined to assess the effect of ALY688-SR. Transcriptional characterization of mice through RNA sequencing was performed to indicate potential molecular mechanisms involved. In cultured hepatocytes, ALY688 efficiently induced adiponectin-like signaling, including the AMP-activated protein kinase and p38 mitogen-activated protein kinase pathways, and did not elicit cytotoxicity. Administration of ALY688-SR in mice did not influence body weight but significantly ameliorated CDAHF-induced hepatic steatosis, inflammation, and fibrosis, therefore effectively preventing the development and progression of MASH. Mechanistically, ALY688-SR treatment markedly induced hepatic expression of genes involved in fatty acid oxidation, whereas it significantly suppressed the expression of pro-inflammatory and pro-fibrotic genes as demonstrated by transcriptomic analysis. ALY688-SR may represent an effective approach in MASH treatment. Its mode of action involves inhibition of hepatic steatosis, inflammation, and fibrosis, possibly via canonical adiponectin-mediated signaling.


Subject(s)
Adiponectin , Disease Models, Animal , Hepatocytes , Non-alcoholic Fatty Liver Disease , Animals , Adiponectin/metabolism , Adiponectin/pharmacology , Adiponectin/deficiency , Mice , Humans , Hepatocytes/metabolism , Hepatocytes/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Male , Mice, Inbred C57BL , Signal Transduction/drug effects , Diet, High-Fat/adverse effects , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/drug therapy , Metabolism, Inborn Errors/pathology , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Metabolic Diseases/prevention & control , Metabolic Diseases/etiology , Liver/metabolism , Liver/drug effects , Liver/pathology , Fatty Liver/prevention & control , Fatty Liver/metabolism , Fatty Liver/drug therapy , Fatty Liver/pathology
8.
Materials (Basel) ; 17(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38793362

ABSTRACT

High-strength steel (HSS) members with welded sections exhibit a notably lower residual compressive stress ratio compared with common mild steel (CMS) members. Despite this difference, current codes often generalize the findings from CMS members to HSS members, and the previous unified residual stress models are generally conservative. This study focuses on the membrane residual stress distribution in Q690 steel welded box sections. By leveraging experimental results, the influence of section sizes and welding parameters on membrane residual stress was delved into. A larger plate size correlates with a decrease in the residual compressive stress across the section, with a more pronounced reduction observed in adjacent plates. Additionally, augmenting the number of welding passes tends to diminish residual stresses across the section. Results showed that membrane residual stress adhered to the section's self-equilibrium, while the self-equilibrium in the plates was not a uniform pattern. A reliable residual stress simulation method for Q690 steel welded box sections was established using a three-dimensional thermal-elastic-plastic finite element model (3DTEFEM) grounded in experimental data. This method served as the cornerstone for parameter analysis in this study and set the stage for subsequent research. As a result, an accurate unified residual stress model for Q690 steel welded box sections was derived.

9.
Research (Wash D C) ; 7: 0382, 2024.
Article in English | MEDLINE | ID: mdl-38812532

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is the progressive form of metabolic dysfunction-associated steatotic liver disease (MASLD), and closely associated with a high risk of liver-related morbidity and mortality. Although enhanced neutrophil infiltration of the liver is a histological hallmark of MASH, the morphological pattern of hepatic neutrophils and their relevance to the definition of MASH remain unknown. This clinicopathological study aimed to determine the association of neutrophilic crown-like structures (CLSs) in liver biopsies and evaluate their relevance to the histological diagnosis of MASH. A total of 483 morbidly obese adults who underwent bariatric surgery were recruited. Neutrophilic CLSs in liver biopsies were detected by immunohistochemistry for neutrophil elastase and proteinase 3. All participants were classified into 4 histological subgroups: no MASLD (118, 24.4%), MASLD (76, 15.7%), borderline MASH (185, 38.3%), and definite MASH (104, 21.5%). In the discovery cohort (n = 379), the frequency of neutrophilic CLSs increased in line with the severity of liver disease. The number of neutrophilic CLSs was positively correlated with established histological characteristics of MASH. At a cutoff value of <0.3 per 20× microscopic field, the number of neutrophilic CLSs yielded a robust diagnostic accuracy to discriminate no MASLD and MASLD from borderline MASH and definite MASH; a cutoff at >1.3 per 20× microscopic field exhibited a statistically significant accuracy to distinguish definite MASH from other groups (no MASLD, MASLD, and borderline MASH). The significance of neutrophilic CLSs in identifying borderline MASH and definite MASH was confirmed in an external validation cohort (n = 104). The frequency of neutrophilic CLSs was significantly higher than that of macrophagic CLSs. In conclusion, neutrophilic CLSs in the liver represent a typical histological characteristic of MASH and may serve as a promising indicator to improve the diagnostic accuracy of MASH during histological assessment of liver biopsies.

10.
BMC Public Health ; 24(1): 1323, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755574

ABSTRACT

BACKGROUND: Irregular sleep patterns have been associated with inflammation. Galectin-3, a novel biomarker, plays an important role in inflammation. We investigated the relationship between sleep patterns and galectin-3 in a Chinese population. METHODS: A total of 1,058 participants from the Shenzhen-Hong Kong United Network on Cardiovascular Disease study were included in the analysis. Age and sex-adjusted linear regression models were employed to investigate the relationship between galectin-3 level and traditional metabolic biomarkers. Logistic regression models were used to estimate the association among sleep disturbance, nighttime sleep duration, and daytime napping duration and elevated galectin-3, with elevated galectin-3 defined as galectin-3 level > 65.1 ng/ml. RESULTS: Of study participants, the mean age was 45.3 years and 54.3% were women. Waist circumference, natural logarithm (ln)-transformed triglyceride, and ln-transformed high sensitivity C-reactive protein were positively associated with galectin-3 level (age and sex-adjusted standardized ß [95% confidence interval (CI)], 0.12 [0.04, 0.21], 0.11 [0.05, 0.17], and 0.08 [0.02, 0.14], respectively). Sleep disturbance was associated with elevated galectin-3 (odds ratio [95% CI], 1.68 [1.05, 2.68], compared to those without sleep disturbance) after adjusting for traditional metabolic biomarkers. No interaction was observed between galectin-3 and age, sex, obesity, hypertension, and diabetes on sleep disturbance. No association was found between nighttime sleep duration or daytime napping duration and elevated galectin-3. CONCLUSIONS: Our study provides evidence of a significant association between sleep disturbance and elevated galectin-3 level, independent of traditional metabolic biomarkers. Screening and interventions on galectin-3 could assist in preventing sleep disturbance-induced inflammatory disease.


Subject(s)
Biomarkers , Galectin 3 , Sleep Wake Disorders , Sleep , Adult , Female , Humans , Male , Middle Aged , Biomarkers/blood , China/epidemiology , East Asian People , Galectin 3/blood , Hong Kong/epidemiology , Sleep/physiology , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/blood
11.
Sci Adv ; 10(16): eadl1856, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640241

ABSTRACT

Continuous glucose monitoring systems (CGMs) are critical toward closed-loop diabetes management. The field's progress urges next-generation CGMs with enhanced antinoise ability, reliability, and wearability. Here, we propose a coin-sized, fully integrated, and wearable CGM, achieved by holistically synergizing state-of-the-art interdisciplinary technologies of biosensors, minimally invasive tools, and hydrogels. The proposed CGM consists of three major parts: (i) an emerging biochemical signal amplifier, the organic electrochemical transistor (OECT), improving the signal-to-noise ratio (SNR) beyond traditional electrochemical sensors; (ii) a microneedle array to facilitate subcutaneous glucose sampling with minimized pain; and (iii) a soft hydrogel to stabilize the skin-device interface. Compared to conventional CGMs, the OECT-CGM offers a high antinoise ability, tunable sensitivity and resolution, and comfort wearability, enabling personalized glucose sensing for future precision diabetes health care. Last, we discuss how OECT technology can help push the limit of detection of current wearable electrochemical biosensors, especially when operating in complicated conditions.


Subject(s)
Biosensing Techniques , Diabetes Mellitus , Humans , Blood Glucose Self-Monitoring , Blood Glucose , Continuous Glucose Monitoring , Reproducibility of Results , Glucose , Diabetes Mellitus/diagnosis
12.
Med Rev (2021) ; 4(2): 158-168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38680683

ABSTRACT

Metabolic dysfunction-associated fatty liver disease (MAFLD) has reached epidemic proportions globally in parallel to the rising prevalence of obesity. Despite its significant burden, there is no approved pharmacotherapy specifically tailored for this disease. Many potential drug candidates for MAFLD have encountered setbacks in clinical trials, due to safety concerns or/and insufficient therapeutic efficacy. Nonetheless, several investigational drugs that mimic the actions of endogenous metabolic hormones, including thyroid hormone receptor ß (THRß) agonists, fibroblast growth factor 21 (FGF21) analogues, and glucagon-like peptide-1 receptor agonists (GLP-1RAs), showed promising therapeutic efficacy and excellent safety profiles. Among them, resmetirom, a liver-targeted THRß-selective agonist, has met the primary outcomes in alleviation of metabolic dysfunction-associated steatohepatitis (MASH), the advanced form of MAFLD, and liver fibrosis in phase-3 clinical trials. These hormone-based pharmacotherapies not only exhibit varied degrees of therapeutic efficacy in mitigating hepatic steatosis, inflammation and fibrosis, but also improve metabolic profiles. Furthermore, these three hormonal agonists/analogues act in a complementary manner to exert their pharmacological effects, suggesting their combined therapies may yield synergistic therapeutic benefits. Further in-depth studies on the intricate interplay among these metabolic hormones are imperative for the development of more efficacious combination therapies, enabling precision management of MAFLD and its associated comorbidities.

13.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588421

ABSTRACT

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Subject(s)
Adipose Tissue, Brown , Glucose , Mice , Humans , Animals , Glucose/metabolism , Adipose Tissue, Brown/metabolism , Acetylation , Adipose Tissue, White/metabolism , Energy Metabolism , Obesity/genetics , Obesity/metabolism , Thermogenesis/genetics , Mice, Inbred C57BL , Basic-Leucine Zipper Transcription Factors/metabolism
14.
Burns Trauma ; 12: tkad055, 2024.
Article in English | MEDLINE | ID: mdl-38601971

ABSTRACT

Background: Prevention of diabetic heart myocardial ischemia-reperfusion (IR) injury (MIRI) is challenging. Propofol attenuates MIRI through its reactive oxygen species scavenging property at high doses, while its use at high doses causes hemodynamic instability. Salvianolic acid A (SAA) is a potent antioxidant that confers protection against MIRI. Both propofol and SAA affect metabolic profiles through regulating Adenosine 5'-monophosphate-activated protein kinase (AMPK). The aim of this study was to investigate the protective effects and underlying mechanisms of low doses of propofol combined with SAA against diabetic MIRI. Methods: Diabetes was induced in mice by a high-fat diet followed by streptozotocin injection, and MIRI was induced by coronary artery occlusion and reperfusion. Mice were treated with propofol at 46 mg/kg/h without or with SAA at 10 mg/kg/h during IR. Cardiac origin H9c2 cells were exposed to high glucose (HG) and palmitic acid (PAL) for 24 h in the absence or presence of cluster of differentiation 36 (CD36) overexpression or AMPK gene knockdown, followed by hypoxia/reoxygenation (HR) for 6 and 12 h. Results: Diabetes-exacerbated MIRI is evidenced as significant increases in post-ischemic infarction with reductions in phosphorylated (p)-AMPK and increases in CD36 and ferroptosis. Propofol moderately yet significantly attenuated all the abovementioned changes, while propofol plus SAA conferred superior protection against MIRI to that of propofol. In vitro, exposure of H9c2 cells under HG and PAL decreased cell viability and increased oxidative stress that was concomitant with increased levels of ferroptosis and a significant increase in CD36, while p-AMPK was significantly reduced. Co-administration of low concentrations of propofol and SAA at 12.5 µM in H9c2 cells significantly reduced oxidative stress, ferroptosis and CD36 expression, while increasing p-AMPK compared to the effects of propofol at 25 µM. Moreover, either CD36 overexpression or AMPK silence significantly exacerbated HR-induced cellular injuries and ferroptosis, and canceled propofol- and SAA-mediated protection. Notably, p-AMPK expression was downregulated after CD36 overexpression, while AMPK knockdown did not affect CD36 expression. Conclusions: Combinational usage of propofol and SAA confers superior cellular protective effects to the use of high-dose propofol alone, and it does so through inhibiting HR-induced CD36 overexpression to upregulate p-AMPK.

15.
Am J Med Sci ; 368(1): 48-54, 2024 07.
Article in English | MEDLINE | ID: mdl-38460926

ABSTRACT

BACKGROUND: Stroke is prevalent in hypertensive population. It has been suggested that unsaturated fatty acids (USFA) have protective effect on stroke. The effect of saturated fatty acids (SFAs) on stroke is still unclear. Therefore, we studied the relationship between circulating fatty acids and acute ischemic stroke (AIS) in hypertensive patients. METHODS: Eighty-nine pairs including 100 men and 78 women matched by sex and age were recruited. Each pair included a hypertensive patient within 48h of AIS onset and a hypertensive patient without stroke. Six circulating fatty acids were methylated before concentration determination which was repeated twice with percent recovery estimated. RESULTS: There were differences in educational level (P = 0.002) and occupation (P < 0.001) between stroke and non-stroke participants. All the 6 fatty acid levels were higher in non-stroke participants (P = 0.017 for palmitoleic acid, 0.001 for palmitic acid, <0.001 for linoleic acid, <0.001 for behenic acid, <0.001 for nervonic acid and 0.002 for lignoceric acid). In logistic regression analysis, AIS was inversely associated with fatty acid levels except for lignoceric acid. After adjustment for education and occupation, the palmitoleic acid and palmitic acid levels were no longer inversely associated with AIS. After further adjustment for systolic blood pressure, smoking, drinking, total cholesterol and triglyceride, the inverse associations of linoleic acid (OR = 0.965, 95%CI = 0.942-0.990, P = 0.005), behenic acid (OR = 0.778, 95%CI = 0.664-0.939, P = 0.009), nervonic acid (OR = 0.323, 95%CI = 0.121-0.860, P = 0.024) with AIS remained significant. CONCLUSIONS: Circulating fatty acids except lignoceric acid were inversely associated with AIS. Both USFAs and SFAs may have beneficial effect on stroke prevention in hypertensive population.


Subject(s)
Fatty Acids , Hypertension , Stroke , Humans , Female , Male , Hypertension/blood , Hypertension/epidemiology , Hypertension/complications , Fatty Acids/blood , Middle Aged , Aged , Stroke/blood , Stroke/epidemiology , Risk Factors
16.
Endocrine ; 85(2): 685-694, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38460073

ABSTRACT

PURPOSE: To investigate the relationship between abnormal glucose metabolism, type 2 diabetes (T2D), and periodontal disease (PER) independent of Body Mass Index (BMI), we employed a genome-wide cross-trait approach to clarify the association. METHODS: Our study utilized the most extensive genome-wide association studies conducted for populations of European ancestry, including PER, T2D, fasting glucose, fasting insulin, 2-hour glucose after an oral glucose challenge, HOMA-ß, HOMA-IR (unadjusted or adjusted for BMI) and HbA1c. RESULTS: With this approach, we were able to identify pleiotropic loci, establish expression-trait associations, and quantify global and local genetic correlations. There was a significant positive global genetic correlation between T2D (rg = 0.261, p = 2.65 × 10-13), HbA1c (rg = 0.182, p = 4.14 × 10-6) and PER, as well as for T2D independent of BMI (rg = 0.158, p = 2.34 × 10-6). A significant local genetic correlation was also observed between PER and glycemic traits or T2D. We also identified 62 independent pleiotropic loci that impact both PER and glycemic traits, including T2D. Nine significant pathways were identified between the shared genes between T2D, glycemic traits and PER. Genetically liability of HOMA-ßadjBMI was causally associated with the risk of PER. CONCLUSION: Our research has revealed a genetic link between T2D, glycemic traits, and PER that is influenced by biological pleiotropy. Notably, some of these links are not related to BMI. Our research highlights an underlying link between patients with T2D and PER, regardless of their BMI.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Periodontal Diseases , Humans , Diabetes Mellitus, Type 2/genetics , Periodontal Diseases/genetics , Blood Glucose , Male , Genetic Predisposition to Disease , Female , Body Mass Index , Middle Aged , Glycated Hemoglobin/analysis , Insulin Resistance/genetics , Polymorphism, Single Nucleotide
17.
J Neuroinflammation ; 21(1): 77, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539253

ABSTRACT

Adiponectin (APN) is an adipokine which predominantly expresses in adipocytes with neuroprotective and anti-inflammatory effects. We have recently indicated that circulatory trimeric APN can enter the brain by crossing the blood-brain barrier (BBB) and modulate microglia-mediated neuroinflammation. Here, we found that the microglial NLR family pyrin domain containing 3 (NLRP3)-inflammasome activation was exacerbated in APN-/-5xFAD mice in age-dependent manner. The focus of this study was to develop a new and tractable therapeutic approach for treating Alzheimer's disease (AD)-related pathology in 5xFAD mice using peripheral APN gene therapy. We have generated and transduced adeno-associated virus (AAV2/8) expressing the mouse mutated APN gene (APNC39S) into the liver of 5xFAD mice that generated only low-molecular-weight trimeric APN (APNTri). Single dose of AAV2/8-APNC39S in the liver increased circulatory and cerebral APN levels indicating the overexpressed APNTri was able to cross the BBB. Overexpression of APNTri decreased both the soluble and fibrillar Aß in the brains of 5xFAD mice. AAV2/8-APNTri treatment reduced Aß-induced IL-1ß and IL-18 secretion by suppressing microglial NLRP3-inflammasome activation. The memory functions improved significantly in AAV-APNTri-treated 5xFAD mice with reduction of dystrophic neurites. These findings demonstrate that peripheral gene delivery to overexpress trimeric APN can be a potential therapy for AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Alzheimer Disease/pathology , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Adiponectin/genetics , Adiponectin/pharmacology , Microglia , Liver/pathology , Amyloid beta-Peptides/pharmacology
18.
Life Sci ; 345: 122594, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38537900

ABSTRACT

A large number of patients are affected by classical heart failure (HF) symptomatology with preserved ejection fraction (HFpEF) and multiorgan syndrome. Due to high morbidity and mortality rate, hospitalization and mortality remain serious socioeconomic problems, while the lack of effective pharmacological or device treatment means that HFpEF presents a major unmet medical need. Evidence from clinical and basic studies demonstrates that systemic inflammation, increased oxidative stress, and impaired mitochondrial function are the common pathological mechanisms in HFpEF. Tetrahydrobiopterin (BH4), beyond being an endogenous co-factor for catalyzing the conversion of some essential biomolecules, has the capacity to prevent systemic inflammation, enhance antioxidant resistance, and modulate mitochondrial energy production. Therefore, BH4 has emerged in the last decade as a promising agent to prevent or reverse the progression of disorders such as cardiovascular disease. In this review, we cover the clinical progress and limitations of using downstream targets of nitric oxide (NO) through NO donors, soluble guanylate cyclase activators, phosphodiesterase inhibitors, and sodium-glucose co-transporter 2 inhibitors in treating cardiovascular diseases, including HFpEF. We discuss the use of BH4 in association with HFpEF, providing new evidence for its potential use as a pharmacological option for treating HFpEF.


Subject(s)
Biopterins/analogs & derivatives , Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Humans , Heart Failure/drug therapy , Stroke Volume , Biopterins/therapeutic use , Inflammation , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
19.
Trends Endocrinol Metab ; 35(5): 371-384, 2024 May.
Article in English | MEDLINE | ID: mdl-38423900

ABSTRACT

Recent advances in fibroblast growth factor 21 (FGF21) biology and pharmacology have led to the development of several long-acting FGF21 analogues and antibody-based mimetics now in various phases of clinical trials for the treatment of obesity-related metabolic comorbidities. The efficacy of these FGF21 analogues/mimetics on glycaemic control and weight loss is rather mild and inconsistent; nevertheless, several promising therapeutic benefits have been reproducibly observed in most clinical studies, including amelioration of dyslipidaemia (particularly hypertriglyceridaemia) and hepatic steatosis, reduction of biomarkers of liver fibrosis and injury, and resolution of metabolic dysfunction-associated steatohepatitis (MASH). Evidence is emerging that combination therapy with FGF21 analogues and other hormones (such as glucagon-like peptide 1; GLP-1) can synergise their pharmacological benefits, thus maximising the therapeutic efficacy for obesity and its comorbidities.


Subject(s)
Fibroblast Growth Factors , Obesity , Humans , Fibroblast Growth Factors/therapeutic use , Fibroblast Growth Factors/metabolism , Obesity/drug therapy , Clinical Trials as Topic , Animals
20.
EMBO Mol Med ; 16(3): 432-444, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38321233

ABSTRACT

Regular exercise has both immediate and long-lasting benefits on cardiometabolic health, and has been recommended as a cornerstone of treatment in the management of diabetes and cardiovascular conditions. Exerkines, which are defined as humoral factors responsive to acute or chronic exercise, have emerged as important players conferring some of the multiple cardiometabolic benefits of exercise. Over the past decades, hundreds of exerkines released from skeletal muscle, heart, liver, adipose tissue, brain, and gut have been identified, and several exerkines (such as FGF21, IL-6, and adiponectin) have been exploited therapeutically as exercise mimetics for the treatment of various metabolic and cardiovascular diseases. Recent advances in metagenomics have led to the identification of gut microbiota, a so-called "hidden" metabolic organ, as an additional class of exerkines determining the efficacy of exercise in diabetes prevention, cardiac protection, and exercise performance. Furthermore, multiomics-based studies have shown the feasibility of using baseline exerkine signatures to predict individual responses to exercise with respect to metabolic and cardiorespiratory health. This review aims to explore the molecular pathways whereby exerkine networks mediate the cardiometabolic adaptations to exercise by fine-tuning inter-organ crosstalk, and discuss the roadmaps for translating exerkine-based discovery into the therapeutic application and personalized medicine in the management of the cardiometabolic disease.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Humans , Exercise/physiology , Liver , Muscle, Skeletal/metabolism , Diabetes Mellitus/therapy , Cardiovascular Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL