Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 19(23): 8689-8705, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38039161

ABSTRACT

We present a formulation of spin-conserving and spin-flip hybrid time-dependent density functional theory (TDDFT), including the calculation of analytical forces, which allows for efficient calculations of excited state properties of solid-state systems with hundreds to thousands of atoms. We discuss an implementation on both GPU- and CPU-based architectures along with several acceleration techniques. We then apply our formulation to the study of several point defects in semiconductors and insulators, specifically the negatively charged nitrogen-vacancy and neutral silicon-vacancy centers in diamond, the neutral divacancy center in 4H silicon carbide, and the neutral oxygen-vacancy center in magnesium oxide. Our results highlight the importance of taking into account structural relaxations in excited states in order to interpret and predict optical absorption and emission mechanisms in spin defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...