Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Int J Biol Macromol ; 269(Pt 1): 131849, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38670202

ABSTRACT

Long-term patency and ability for revascularization remain challenges for small-caliber blood vessel grafts to treat cardiovascular diseases clinically. Here, a gelatin/heparin coated bio-inspired polyurethane composite fibers-based artificial blood vessel with continuous release of NO and biopeptides to regulate vascular tissue repair and maintain long-term patency is fabricated. A biodegradable polyurethane elastomer that can catalyze S-nitrosothiols in the blood to release NO is synthesized (NPU). Then, the NPU core-shell structured nanofiber grafts with requisite mechanical properties and biopeptide release for inflammation manipulation are fabricated by electrospinning and lyophilization. Finally, the surface of tubular NPU nanofiber grafts is coated with heparin/gelatin and crosslinked with glutaraldehyde to obtain small-caliber artificial blood vessels (ABVs) with the ability of vascular revascularization. We demonstrate that artificial blood vessel grafts promote the growth of endothelial cells but inhibit the growth of smooth muscle cells by the continuous release of NO; vascular grafts can regulate inflammatory balance for vascular tissue remodel without excessive collagen deposition through the release of biological peptides. Vascular grafts prevent thrombus and vascular stenosis to obtain long-term patency. Hence, our work paves a new way to develop small-caliber artificial blood vessel grafts that can maintain long-term patency in vivo and remodel vascular tissue successfully.

2.
Food Funct ; 15(10): 5329-5342, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38625681

ABSTRACT

Antibiotic-associated diarrhea (AAD) is a common side effect during antibiotic treatment, and this has warranted research into alternative protocols. In this study, we investigated the potential therapeutic effects of three cohorts, Lactobacillus plantarum KLDS 1.0386, Lactobacillus acidophilus KLDS 1.0901 and a mixed strain of both, on intestinal inflammation, the intestinal mucosal barrier, and microbial community in mice with ampicillin-induced diarrhea. The results showed that Lactobacillus inhibited the activation of the TLR4/NF-κB signaling pathway, decreased the expression of pro-inflammatory cytokines, increased the expression of anti-inflammatory cytokines in the murine intestine, and alleviated the intestinal barrier damage and inflammation induced by ampicillin. In addition, Lactobacillus ameliorates intestinal epithelial barrier damage by increasing the expression of tight junction proteins and aquaporins. After Lactobacillus treatment, the diversity of gut microbiota increased significantly, and the composition and function of gut microbiota gradually recovered. In the gut microbiota, Bacteroidetes and Escherichia Shigella related to the synthesis of short-chain fatty acids (SCFAs) were significantly affected by ampicillin, while Lactobacillus regulates the cascade of the microbial-SCFA signaling pathway, which greatly promoted the generation of SCFAs. Collectively, Lactobacillus showed better results in treating AAD, especially in mixed strains.


Subject(s)
Anti-Bacterial Agents , Diarrhea , Fatty Acids, Volatile , Gastrointestinal Microbiome , Animals , Mice , Fatty Acids, Volatile/metabolism , Diarrhea/chemically induced , Diarrhea/drug therapy , Diarrhea/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/adverse effects , Gastrointestinal Microbiome/drug effects , Lactobacillus , Milk , Ampicillin/pharmacology , Male , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Probiotics/pharmacology , Lactobacillus plantarum , Lactobacillus acidophilus , Mice, Inbred C57BL
3.
J Endovasc Ther ; : 15266028231213608, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38014769

ABSTRACT

OBJECTIVE: Studies have shown that dynamic cerebral autoregulation (dCA) is impaired in patients with severe internal carotid artery (ICA) stenosis and that carotid endarterectomy (CEA) may improve dCA in these patients. However, the time course of dCA changes in patients after CEA remains unclear. Therefore, this study aimed to investigate the effects of CEA on the dCA in patients with carotid artery stenosis at different time points. METHODS: This prospective study enrolled 44 patients (19 symptomatic stenosis patients and 25 asymptomatic stenosis patients) who underwent CEA and 44 age- and sex-matched controls. In the CEA group, the patients underwent dCA measurements at baseline, within 3 days, and 1 month after CEA. Transfer function parameters, phase difference (PD), and gain were used to quantify dCA. Changes in dCA before and after CEA were analyzed in detail. RESULTS: The bilateral PD of the patients before CEA was significantly lower than that of the control group. This damage did not improve within 3 days after surgery. One month after surgery, the PD on the affected side of the patients significantly improved compared with before surgery and reached the level of the control group. The PD of affected side across time points in symptomatic and asymptomatic stenosis patients is consistent with that in all patients. CONCLUSIONS: The dCA level did not improve immediately after CEA but significantly improved 1 month after surgery. This suggests that the occurrence of stroke should be considered in the acute period after CEA surgery, and its preventive effect on stroke may be effective after 1 month. CLINICAL IMPACT: We found the dCA level did not improve immediately after CEA but significantly improved 1 month after surgury. This suggests that the occuttencce of stroke and surgical complications (such as cerebral hyperperfusion syndrome) associated with impaired dCA in the acute phase after CEA surgery should be of particular concern.

4.
Anal Chem ; 95(38): 14203-14208, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37656042

ABSTRACT

Sensitive and multiple detection of the biomarkers of type 1 diabetes mellitus (T1DM) is vital to the early diagnosis and clinical treatment of T1DM. Herein, we developed a SERS-based biosensor using polyvinylidene fluoride (PVDF) membranes as a flexible support for the detection of glutamic acid decarboxylase antibodies (GADA) and insulin autoantibodies (IAA). Two kinds of silver-gold core-shell nanotags embedded with Raman probes and attached with GADA or IAA antibodies were synthesized to capture the targets, enabling highly sensitive and highly selective detection of GADA and IAA. The embedded Raman probes sandwiched between silver and gold layers guaranteed spectral stability and reliability. Moreover, the utilization of two Raman probes enables simultaneous and multiplexing detection of both GADA and IAA, improving the detection accuracy for T1DM. The proposed SERS-based method has been proven feasible for clinical sample detection, demonstrating its great potential in sensitive, reliable, and rapid diagnosis of T1DM.


Subject(s)
Biosensing Techniques , Diabetes Mellitus, Type 1 , Metal Nanoparticles , Humans , Diabetes Mellitus, Type 1/diagnosis , Silver , Reproducibility of Results , Biomarkers , Antibodies , Gold , Spectrum Analysis, Raman/methods
5.
Talanta ; 261: 124654, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37196403

ABSTRACT

In diagnosing prostate cancer and distinguishing it from other prostate diseases, the ratio of the concentration of free prostate-specific antigen (f-PSA) to total prostate-specific antigen (t-PSA), i.e., (f-PSA%) is more accurate than the concentration of t-PSA alone. Immunoassay based on surface-enhanced Raman scattering (SERS) frequency shift has been proven to be particularly suitable for detecting large biomolecules with high reproducibility. Along similar lines, the present study developed a SERS-based biosensor that simultaneously detects t-PSA and f-PSA. The 4-mercaptobenzoic acid (MBA) on the immunocapture substrate is coupled to the t-PSA antibody through the carboxyl group, and the combination of t-PSA induces the Raman frequency shifts of MBA. The immunocolloidal gold attached with f-PSA antibodies selectively capture the f-PSA that immobilized on the MBA-modified SERS substrates, allowing for f-PSA quantification according to the SERS intensities of the 5, 5'-Dithiobis (succinimidyl-2-nitrobenzoate) (DSNB) probe. The results show that f-PSA and t-PSA have good linear response in the concentration scale of 0.1-20 ng/mL, and 1-200 ng/mL, respectively. The biosensor combines Raman frequency shifts and intensities, which greatly simplifies traditional procedures for f-PSA% detection. All the results demonstrated the great potential of the proposed biosensor in highly reproducible and accurate diagnosis of prostate cancers.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Prostatic Neoplasms , Male , Humans , Prostate-Specific Antigen , Reproducibility of Results , Prostatic Neoplasms/diagnosis , Antibodies , Spectrum Analysis, Raman/methods , Gold/chemistry , Metal Nanoparticles/chemistry
6.
Molecules ; 27(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36431931

ABSTRACT

Oxidative stress is one of the potential causes of nervous system disease. Ginseng extract possesses excellent antioxidant activity; however, little research on the function of the ginseng fibrous root. This study aimed to investigate the neuroprotective effects of ginseng fibrous root to alleviate the pathogenesis of Alzheimer's disease (AD) against oxidative stress. Ginseng fibrous root enzymatic hydrolysate (GFREH) was first prepared by digesting ginseng fibrous roots with alkaline protease. In vitro, the GFREH showed antioxidant activities in free radical scavenging mechanisms. With a cellular model of AD, GFREH inhibited the increase in Ca2+ levels and intracellular ROS content, maintained the balance of mitochondrial membrane potential, and relieved L-glutamic acid-induced neurotoxicity. In vivo, GFREH improved the survival rate of Caenorhabditis elegans (C. elegans) under oxidative stress, upregulated SOD-3 expression, and reduced reactive oxygen species (ROS) content. Therefore, our findings provide evidence for the alleviation effect of GFREH against oxidative stress in neuroprotection, which may accelerate the development of anti-Alzheimer's drugs and treatments in the future.


Subject(s)
Neuroprotective Agents , Panax , Animals , Neuroprotective Agents/pharmacology , Reactive Oxygen Species/metabolism , Caenorhabditis elegans/metabolism , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Panax/metabolism
7.
RSC Adv ; 12(50): 32355-32364, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36425712

ABSTRACT

Platelets activation and hypercoagulation induced by tumor cell-specific thrombotic secretions such as tissue factor (TF) and cancer procoagulant (CP), microparticles (MPs), and cytokines not only increase cancer-associated thrombosis but also accelerate cancer progress. In addition, the tumor heterogeneity such avascular areas, vascular occlusion and interstitial fluid pressure still challenges efficient drug delivery into tumor tissue. To overcome these adversities, we herein present an antiplatelet strategy based on a proteinic nanoparticles co-assembly of l-arginine (LA) and photosensitizer IR783 for local NO release to inhibit the activation of tumor-associated platelets and normalize angiogenesis, suppressing thrombosis and increasing tumoral accumulation of the nanoagent. In addition, NIR-controlled release localizes the NO spatiotemporally to tumor-associated platelets and prevents undesirable systemic bleeding substantially. Moreover, NO can transform to more cytotoxic peroxynitrite to destroy cancer cells. Our study describes an antiplatelet-directed cancer treatment, which represents a promising area of targeted cancer therapy.

8.
Front Endocrinol (Lausanne) ; 13: 981100, 2022.
Article in English | MEDLINE | ID: mdl-36187128

ABSTRACT

Type 2 diabetes mellitus (T2DM) affects the formation of carotid atherosclerotic plaques (CAPs) and patients are prone to plaque instability. It is crucial to clarify transcriptomics profiles and identify biomarkers related to the progression of T2DM complicated by CAPs. Ten human CAP samples were obtained, and whole transcriptome sequencing (RNA-seq) was performed. Samples were divided into two groups: diabetes mellitus (DM) versus non-DM groups and unstable versus stable groups. The Limma package in R was used to identify lncRNAs, circRNAs, and mRNAs. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, protein-protein interaction (PPI) network creation, and module generation were performed for differentially expressed mRNAs. Cytoscape was used to create a transcription factor (TF)-mRNA regulatory network, lncRNA/circRNA-mRNA co-expression network, and a competitive endogenous RNA (ceRNA) network. The GSE118481 dataset and RT-qPCR were used to verify potential mRNAs.The regulatory network was constructed based on the verified core genes and the relationships were extracted from the above network. In total, 180 differentially expressed lncRNAs, 343 circRNAs, and 1092 mRNAs were identified in the DM versus non-DM group; 240 differentially expressed lncRNAs, 390 circRNAs, and 677 mRNAs were identified in the unstable versus stable group. Five circRNAs, 14 lncRNAs, and 171 mRNAs that were common among all four groups changed in the same direction. GO/KEGG functional enrichment analysis showed that 171 mRNAs were mainly related to biological processes, such as immune responses, inflammatory responses, and cell adhesion. Five circRNAs, 14 lncRNAs, 46 miRNAs, and 54 mRNAs in the ceRNA network formed a regulatory relationship. C22orf34-hsa-miR-6785-5p-RAB37, hsacirc_013887-hsa-miR-6785-5p/hsa-miR-4763-5p/hsa-miR-30b-3p-RAB37, MIR4435-1HG-hsa-miR-30b-3p-RAB37, and GAS5-hsa-miR-30b-3p-RAB37 may be potential RNA regulatory pathways. Seven upregulated mRNAs were verified using the GSE118481 dataset and RT-qPCR. The regulatory network included seven mRNAs, five circRNAs, six lncRNAs, and 14 TFs. We propose five circRNAs (hsacirc_028744, hsacirc_037219, hsacirc_006308, hsacirc_013887, and hsacirc_045622), six lncRNAs (EPB41L4A-AS1, LINC00969, GAS5, MIR4435-1HG, MIR503HG, and SNHG16), and seven mRNAs (RAB37, CCR7, CD3D, TRAT1, VWF, ICAM2, and TMEM244) as potential biomarkers related to the progression of T2DM complicated with CAP. The constructed ceRNA network has important implications for potential RNA regulatory pathways.


Subject(s)
Diabetes Mellitus, Type 2 , MicroRNAs , Plaque, Atherosclerotic , RNA, Long Noncoding , Biomarkers , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Gene Regulatory Networks , Humans , MicroRNAs/genetics , Plaque, Atherosclerotic/genetics , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, CCR7/genetics , Transcription Factors/genetics , Transcriptome , von Willebrand Factor/genetics
9.
Mikrochim Acta ; 189(10): 378, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36076043

ABSTRACT

A new nanozyme (Cu-NADH) is reported composed of Cu-coordinated nicotinamide adenine dinucleotide (NADH) exhibiting laccase-like activity. The Cu-NADH nanozyme had higher heat tolerance and catalytic efficiency than natural laccase, and its catalytic activity can be enhanced by high concentration of Cl ions and it is intensely inhibited by phosphate. Therefore, a colorimetric method based on Cu-NADH and indigo carmine was successfully developed to detect phosphate in water. This method showed an excellent selectivity for phosphate, and it had a linear relationship in the phosphate concentration range 2-50 µM with a detection limit of 0.37 µM. We believe that this example of coordination between metal ions and biomolecules to mimic natural enzymes can inspire more effective and alternative strategies in nanozyme design and expand their use in sensing and determination.


Subject(s)
Colorimetry , Laccase , Catalysis , Colorimetry/methods , NAD , Phosphates
10.
Biosens Bioelectron ; 216: 114660, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36099835

ABSTRACT

The overexpression of specific biomarkers in serum is closely related to diseases, and accurate and sensitive detection of them is beneficial for the early diagnosis and treatment of cancer. In this study, we developed a novel surface-enhanced Raman spectroscopy (SERS)-based aptasensor to detect the prostate-specific antigen biomarkers, consisting of total prostate-specific antigen (PSA) and free prostate-specific antigen (f-PSA). A composite structure containing arrays of polystyrene colloidal sphere @Ag shell (PS@Ag) was fabricated as a SERS-active chip. A complementary DNA probe (SH-DNA) and PSA aptamer (Apt) were immobilised stepwise on the chip, followed by the binding of a Raman reporter methylene blue (MB) to the guanine base of the aptamer. PSA-Apt recognition causes the release of MB-Apt and a decrease in the SERS intensity of MB on the chip, which correlates with the PSA concentration. The proposed biosensor has high spectral reproducibility, selectivity, and sensitivity and successfully determines the PSA levels in serum samples collected from prostate cancer patients, demonstrating great potential for clinical diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Prostatic Neoplasms , Aptamers, Nucleotide/chemistry , Biomarkers, Tumor , Biosensing Techniques/methods , DNA, Complementary , Dimaprit/analogs & derivatives , Gold/chemistry , Guanine , Humans , Limit of Detection , Male , Metal Nanoparticles/chemistry , Methylene Blue , Polystyrenes , Prostate , Prostate-Specific Antigen , Prostatic Neoplasms/diagnosis , Reproducibility of Results , Spectrum Analysis, Raman/methods
11.
Front Mol Neurosci ; 15: 932075, 2022.
Article in English | MEDLINE | ID: mdl-35909453

ABSTRACT

Background: In previous studies, alkaline phosphatase (ALP) level was a prognostic factor for patients with ischemic stroke, and globulin level was associated with hemorrhagic transformation (HT) after intravenous thrombolysis (IVT). However, the association between these serum biomarkers and prognosis in patients with acute ischemic stroke (AIS) who undergo IVT remains unclear. This study aimed to investigate the characteristics of serum ALP and globulin levels after IVT and to assess the relationship between these serum biomarkers and prognosis. Materials and methods: This retrospective study used a prospectively collected database. We included patients with AIS who received recombinant tissue plasminogen activator (rt-PA) IVT. Demographic information, vascular risk factors, laboratory test results, and other stroke-related data were collected for analysis. Clinical outcomes included HT and 3-month poor outcome (modified Rankin Scale scores ≥ 2) after IVT. The association of ALP and globulin levels with HT and poor outcome was investigated using multivariate logistic regression analysis. An individualized prediction model based on ALP and globulin levels for functional outcomes was established. Results: We enrolled 750 patients in this study; 452 patients (60.3%) had poor outcome, and 117 patients (15.6%) had HT after IVT. After adjusting for all confounders, serum globulin level [OR = 1.055; 95% confidence intervals (CI): 1.006-1.107; P = 0.028] was independently associated with HT in patients with IVT. Serum ALP (OR = 1.009; 95% CI: 1.002-1.016; P = 0.010) and globulin levels (OR = 1.062; 95% CI: 1.020-1.107; P = 0.004) were associated with 3-month poor outcome in these patients. The constructed individualized prediction model for the 3-month poor outcome comprised the National Institutes of Health Stroke Scale (NIHSS) score, Trial of Org 10172 in Acute Stroke Treatment (TOAST), history of antihypertensive therapy, ALP and globulin levels. The area under the curve of the training and validation sets were 0.726 and 0.706, respectively, revealing that the model had good discriminating power. The P-values for the Hosmer-Lemeshow test in the training and validation sets were 0.978 and 0.148, respectively, indicating the model had good calibration. Conclusion: This study found that higher serum globulin levels were independently associated with HT. Additionally, higher serum ALP and globulin levels were independently associated with a poor outcome in patients after IVT.

12.
Front Endocrinol (Lausanne) ; 13: 899241, 2022.
Article in English | MEDLINE | ID: mdl-35712254

ABSTRACT

Our objective was to analyze the correlation between serum uric acid (SUA) levels and carotid intima-media thickness (CIMT) and explore the relationship between SUA and carotid atherosclerosis in different glucose metabolism patterns. A total of 614 patients were enrolled in this case-control study, including 406 in the normouricemia group and 208 in the hyperuricemia group. The two groups were each divided into three groups according to fasting blood glucose (FBG) level: normal, impaired fasting glucose (IFG), and diabetes mellitus (DM). CIMT and the CIMT thickening rate in the hyperuricemia group were significantly higher than those in the normouricemia group: 0.17 (0.11-0.24) cm vs. 0.12 (0.08-0.15) cm and 73.56% vs. 51.97% (p < 0.001). Pearson's correlation analysis showed that age, systolic blood pressure (SBP), diastolic blood pressure, FBG, triglyceride, SUA, creatinine, and blood urea nitrogen were positively correlated with CIMT, whereas high-density lipoprotein cholesterol and total cholesterol were negatively correlated with CIMT. Multiple linear regression analysis showed that age, SUA, FBG, and SBP were independent factors that affected CIMT. Furthermore, age and SBP were independent factors in the normouricemia group, and FBG was an independent factor that affected CIMT in the hyperuricemia group (p < 0.05). In the hyperuricemia group, CIMT in the DM group was significantly higher than that in the normal group [0.20 (0.14-0.25)cm vs. 0.15 (0.1-0.25); p < 0.05], and the CIMT thickening rate in the DM group was significantly higher than those in the IFG and normal groups (90.38% vs. 78.38%, 90.38% vs. 65.81%; p < 0.05). The ROC curve analysis showed that uric acid combined with age, SBP, and FBG had the highest area under the curve (AUC) for predicting CIMT thickening [0.855 (95% confidence interval (CI): 0.804-0.906)], followed by uric acid combined with FBG [AUC: 0.767 (95% CI: 0.726-0.808)]. In conclusion, SUA was closely associated with an increase in CIMT in patients with specific FBG metabolic patterns and may be an independent risk factor for carotid atherosclerosis. SUA, especially in combination with other factors (such as age, SBP, FBG), may serve as a specific model to help predict the incidence of CIMT thickening. Clinical Trial Registration: http://www.chictr.org.cn, identifier ChiCTR2000039124.


Subject(s)
Carotid Artery Diseases , Diabetes Mellitus , Hyperuricemia , Blood Glucose/metabolism , Carotid Intima-Media Thickness , Case-Control Studies , Cholesterol , Fasting , Humans , Hyperuricemia/complications , Uric Acid
13.
PLoS Pathog ; 18(6): e1010667, 2022 06.
Article in English | MEDLINE | ID: mdl-35759516

ABSTRACT

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurotropic coronavirus belonging to the genus Betacoronavirus. Similar to pathogenic coronaviruses to which humans are susceptible, such as SARS-CoV-2, PHEV is transmitted primarily through respiratory droplets and close contact, entering the central nervous system (CNS) from the peripheral nerves at the site of initial infection. However, the neuroinvasion route of PHEV are poorly understood. Here, we found that BALB/c mice are susceptible to intranasal PHEV infection and showed distinct neurological manifestations. The behavioral study and histopathological examination revealed that PHEV attacks neurons in the CNS and causes significant smell and taste dysfunction in mice. By tracking neuroinvasion, we identified that PHEV invades the CNS via the olfactory nerve and trigeminal nerve located in the nasal cavity, and olfactory sensory neurons (OSNs) were susceptible to viral infection. Immunofluorescence staining and ultrastructural observations revealed that viral materials traveling along axons, suggesting axonal transport may engage in rapid viral transmission in the CNS. Moreover, viral replication in the olfactory system and CNS is associated with inflammatory and immune responses, tissue disorganization and dysfunction. Overall, we proposed that PHEV may serve as a potential prototype for elucidating the pathogenesis of coronavirus-associated neurological complications and olfactory and taste disorders.


Subject(s)
Betacoronavirus 1 , COVID-19 , Coronavirus Infections/pathology , Olfaction Disorders , Animals , Betacoronavirus 1/physiology , Humans , Mice , Olfaction Disorders/virology , SARS-CoV-2 , Smell , Swine
14.
Food Funct ; 13(11): 6404-6418, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35616024

ABSTRACT

Antibiotic-associated diarrhea (AAD) is a common side effect during antibiotic treatment. In this study, we evaluated the regulatory effect of Bifidobacterium animalis subsp. lactis XLTG11 on mouse diarrhea caused by antibiotic-induced intestinal flora disturbance. Then, two strains of Bifidobacterium animalis subsp. lactis XLTG11 and Bifidobacterium animalis subsp. lactis BB-12 were administered to AAD mice. We found that the recovery effect of using B. lactis XLTG11 was better than that of B. lactis BB-12. B. lactis XLTG11 reduced the pathological characteristics of the intestinal tract, and significantly reduced the levels of lipopolysaccharide (LPS), D-lactic acid (D-LA) and diamine oxidase (DAO) to decrease intestinal permeability. In addition, these two strains significantly increased the expression of aquaporin and tight junction proteins, and inhibited toll-like receptor 4 (TLR4)/activation of the nuclear factor-κB (NF-κB) signaling pathway, significantly increased the levels of anti-inflammatory cytokines and decreased levels of pro-inflammatory cytokines. Moreover, after treatment with B. lactis XLTG11, the contents of acetic acid, propionic acid, butyric acid and total short-chain fatty acids were significantly increased. Compared with the MC group, B. lactis XLTG11 increased the abundance and diversity of the intestinal flora and changed the composition of the intestinal flora. We found that B. lactis XLTG11 can promote the recovery of intestinal flora and mucosal barrier function, thereby effectively improving AAD-related symptoms, providing a scientific basis for future clinical applications.


Subject(s)
Bifidobacterium animalis , Gastrointestinal Microbiome , Probiotics , Animals , Anti-Bacterial Agents/metabolism , Bifidobacterium animalis/physiology , Cytokines/metabolism , Diarrhea/chemically induced , Diarrhea/drug therapy , Inflammation/chemically induced , Inflammation/drug therapy , Mice , Probiotics/pharmacology
15.
Exp Neurol ; 351: 113985, 2022 05.
Article in English | MEDLINE | ID: mdl-35063438

ABSTRACT

Ryanodine receptors (RyR) located on the membrane of the endoplasmic reticulum (ER), are a potent regulator of intracellular calcium levels upon activation. Dysregulated Ca2+ homeostasis is characteristic of hypoxic-ischemic (HI) brain injury and ultimately leads to neurodegeneration. RyRs have thereby been implicated in the Ca2+ imbalance that occurs during and after HI. In this study, we investigated the effects of RyR antagonist, dantrolene, on HI brain injury in neonatal mice. We found that administration of dantrolene (i.p.) on postnatal day 7 mice reduced the infarction volume and morphological damage induced by HI, and improved functional recovery as assessed by neurobehavioral testing. The neuroprotective effect of dantrolene was further demonstrated in neuronal cell culture in vitro, where dantrolene significantly reduced oxygen-glucose deprivation (OGD)-induced cell death. Fura-2 calcium imaging confirmed that dantrolene reduced the intracellular calcium level in cultured cortical neurons in vitro. Finally, Western blot analysis showed that dantrolene treatment reduced cleaved caspase-3 and -9 apoptotic proteins, and elevated pro-survival protein kinase C (PKC) protein levels. Taken together, our results demonstrate that dantrolene exerts neuroprotective effects against neonatal HI brain injury. This suggests that RyRs play a role in mediating the ionic imbalance induced by HI and therefore represent a potential target for drug development.


Subject(s)
Brain Injuries , Calcium Channel Blockers , Dantrolene , Hypoxia-Ischemia, Brain , Neuroprotective Agents , Animals , Animals, Newborn , Brain Injuries/drug therapy , Calcium/metabolism , Calcium Channel Blockers/therapeutic use , Dantrolene/therapeutic use , Homeostasis , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Mice , Neuroprotective Agents/therapeutic use , Ryanodine Receptor Calcium Release Channel/metabolism
16.
J Dairy Sci ; 105(2): 1058-1071, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34802736

ABSTRACT

In recent years, yogurt has been one of the most popular fermented dairy products and is sold worldwide. In this study, pH and titrated acid changes of 4 strains of Lactobacillus delbrueckii ssp. bulgaricus fermented milk during storage were detected. The difference between L. bulgaricus KLDS1.1011 and KLDS1.0207 was significant, with the latter exhibiting reduced acidity levels. Therefore, we determined the complete genome sequence of the 2 strains. Then the expression of specific genes and common genes related to glucose metabolism and proteolysis of L. bulgaricus KLDS1.1011 and KLDS1.0207 were detected by quantitative real-time reverse-transcription PCR. Analysis indicated that the key enzymes in glycometabolism and proteolysis of L. bulgaricus KLDS1.1011 were significantly different than those of L. bulgaricus KLDS1.0207. The contents of lactose and glucose decreased during storage of L. bulgaricus fermented milk, as determined by HPLC, and the contents of lactic acid and galactose increased, with L. bulgaricus KLDS1.1011 increasing less. With skim milk as a raw material, L. bulgaricus KLDS1.1011, KLDS1.0207, and Streptococcus thermophilus S1 were used as fermentation strains to yield yogurt at 42°C, and sensory evaluation was compared with yogurt fermented by commercial starter cultures. Yogurt from L. bulgaricus KLDS1.1011 was the highest-rated. Therefore, the study may provide guidelines for the development of yogurt starters.


Subject(s)
Cultured Milk Products , Lactobacillus delbrueckii , Animals , Fermentation , Hydrogen-Ion Concentration , Lactobacillus delbrueckii/genetics , Streptococcus thermophilus/genetics , Yogurt
17.
Front Genet ; 12: 755507, 2021.
Article in English | MEDLINE | ID: mdl-34804124

ABSTRACT

Atherosclerosis is a chronic inflammatory disease with high prevalence and mortality. The rupture of atherosclerotic plaque is the main reason for the clinical events caused by atherosclerosis. Making clear the transcriptomic and proteomic profiles between the stabe and unstable atherosclerotic plaques is crucial to prevent the clinical manifestations. In the present study, 5 stable and 5 unstable human carotid atherosclerotic plaques were obtained by carotid endarterectomy. The samples were used for the whole transcriptome sequencing (RNA-Seq) by the Next-Generation Sequencing using the Illumina HiSeq, and for proteome analysis by HPLC-MS/MS. The lncRNA-targeted genes and circRNA-originated genes were identified by analyzing their location and sequence. Gene Ontology and KEGG enrichment was carried out to analyze the functions of differentially expressed RNAs and proteins. The protein-protein interactions (PPI) network was constructed by the online tool STRING. The consistency of transcriptome and proteome were analyzed, and the lncRNA/circRNA-miRNA-mRNA interactions were predicted. As a result, 202 mRNAs, 488 lncRNAs, 91 circRNAs, and 293 proteins were identified to be differentially expressed between stable and unstable atherosclerotic plaques. The 488 lncRNAs might target 381 protein-coding genes by cis-acting mechanisms. Sequence analysis indicated the 91 differentially expressed circRNAs were originated from 97 protein-coding genes. These differentially expressed RNAs and proteins were mainly enriched in the terms of the cellular response to stress or stimulus, the regulation of gene transcription, the immune response, the nervous system functions, the hematologic activities, and the endocrine system. These results were consistent with the previous reported data in the dataset GSE41571. Further analysis identified CD5L, S100A12, CKB (target gene of lncRNA MSTRG.11455.17), CEMIP (target gene of lncRNA MSTRG.12845), and SH3GLB1 (originated gene of hsacirc_000411) to be critical genes in regulating the stability of atherosclerotic plaques. Our results provided a comprehensive transcriptomic and proteomic knowledge on the stability of atherosclerotic plaques.

18.
Microorganisms ; 9(10)2021 Oct 03.
Article in English | MEDLINE | ID: mdl-34683415

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic immune-related disease, which can occur through the dysfunction of the immune system caused by the imbalance of gut microbiota. Previous studies have reported the beneficial effects of Bifidobacterium on colitis, while the related mechanisms behind these effects have not been fully elucidated. The aim of our study is to investigate the alleviation effect of Bifidobacterium animalis subsp. lactis XLTG11 (B. lactis) on dextran sulfate sodium (DSS)-induced colitis and its potential mechanism. The results showed that B. lactis XLTG11 significantly decreased weight loss, disease activity index score, colon shortening, myeloperoxide activity, spleen weight, and colon tissue damage. Additionally, B. lactis XLTG11 significantly decreased the levels of pro-inflammatory cytokines and increased the level of anti-inflammatory cytokine. Meanwhile, high doses of B. lactis XLTG11 significantly up-regulated the expression of tight junction proteins and inhibited activation of Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MYD88)/nuclear factor-κB (NF-κB) signaling pathway. Furthermore, B. lactis XLTG11 increased the gut microbiota diversity and modulated gut microbiota composition caused by DSS. Moreover, Spearman's correlation analysis also found that several specific gut microbiota were significantly correlated with colitis-related indicators. These results demonstrated that B. lactis XLTG11 can alleviate DSS-induced colitis by inhibiting the activation of the TLR4/MYD88/NF-κB signaling pathway, regulating inflammatory cytokines, improving intestinal barrier function, and modulating the gut microbiota.

19.
Front Genet ; 12: 617575, 2021.
Article in English | MEDLINE | ID: mdl-34040630

ABSTRACT

Chordoid glioma (CG), a rare slow-growing brain tumor, mainly occurs in the region of the third ventricle. Although its degree of malignancy is relatively low, its clinical prognosis is poor due to obscure clinical manifestations and the particular growing position. Currently, gross total resection is the best available method for treatment of CG. However, the tumor is located in the deep structure of the brain and close to neurovascular structure so it is difficult to remove completely. This study reported a case of CG of the third ventricle 5 years after surgery of right frontal parietal fibrous meningioma, accompanied with peri and post-operative sodium ion metabolism disorder. Whole-exome sequencing (WES) revealed 25 gene mutations shared by meningioma and CG. In addition, the PRKCA D463H CG marker gene mutation also existed in this patient. We reviewed the latest literature on this rare brain tumor, summarized its clinical manifestations, imaging and pathological characteristics, and discussed the mechanism related to its occurrence and the reasons for sodium ion disorder.

20.
Int J Med Sci ; 18(4): 944-952, 2021.
Article in English | MEDLINE | ID: mdl-33456352

ABSTRACT

The extracranial internal carotid artery (ICA) refers to the anatomic location that reaches from the common carotid artery proximally to the skull base distally. The extracranial ICA belongs to the C1 segment of the Bouthillier classification and is at considerable risk for injury. Currently, the understanding of endovascular treatment (EVT) for blunt injury of the extracranial ICA is limited, and a comprehensive review is therefore important. In this review, we found that extracranial ICA blunt injury should be identified in patients presenting after blunt trauma, including classical dissection, pseudoaneurysm, and stenosis/occlusion. Computed tomography angiography (CTA) is the first-line method for screening for extracranial ICA blunt injury, although digital subtraction angiography (DSA) remains the "gold standard" in imaging. Antithrombotic treatment is effective for stroke prevention. However, routine EVT in the form of stenting should be reserved for patients with prolonged neurological symptoms from arterial stenosis or considerably enlarged pseudoaneurysm. Endovascular repair is now emerging as a favored therapeutic option given its demonstrated safety and positive clinical and radiographic outcomes.


Subject(s)
Carotid Artery Injuries/surgery , Endovascular Procedures/standards , Practice Guidelines as Topic , Wounds, Nonpenetrating/surgery , Angiography, Digital Subtraction , Carotid Artery Injuries/diagnosis , Carotid Artery, Internal/diagnostic imaging , Carotid Artery, Internal/surgery , Clinical Decision-Making , Computed Tomography Angiography , Endovascular Procedures/adverse effects , Endovascular Procedures/instrumentation , Humans , Patient Selection , Treatment Outcome , Wounds, Nonpenetrating/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...