Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(17): 8909-8924, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37604686

ABSTRACT

Archaeal ribosomes have many domain-specific features; however, our understanding of these structures is limited. We present 10 cryo-electron microscopy (cryo-EM) structures of the archaeal ribosome from crenarchaeota Sulfolobus acidocaldarius (Sac) at 2.7-5.7 Å resolution. We observed unstable conformations of H68 and h44 of ribosomal RNA (rRNA) in the subunit structures, which may interfere with subunit association. These subunit structures provided models for 12 rRNA expansion segments and 3 novel r-proteins. Furthermore, the 50S-aRF1 complex structure showed the unique domain orientation of aRF1, possibly explaining P-site transfer RNA (tRNA) release after translation termination. Sac 70S complexes were captured in seven distinct steps of the tRNA translocation reaction, confirming conserved structural features during archaeal ribosome translocation. In aEF2-engaged 70S ribosome complexes, 3D classification of cryo-EM data based on 30S head domain identified two new translocation intermediates with 30S head domain tilted 5-6° enabling its disengagement from the translocated tRNA and its release post-translocation. Additionally, we observed conformational changes to aEF2 during ribosome binding and switching from three different states. Our structural and biochemical data provide new insights into archaeal translation and ribosome translocation.


Archaeal ribosomes display variations in their ribosomal proteins and ribosomal RNA (rRNA) expansion segments (ESs). Protein translation in archaea combines features in both bacterial and eukaryotic translation. In this study, we present 10 cryo-electron microscopy structures of the archaeal ribosome from crenarchaeota Sulfolobus acidocaldarius (Sac). The 50S and 30S subunit structures present 3 novel ribosomal proteins and 12 rRNA ESs. The 70S Sac ribosome structures were captured in seven distinct functional states, including pre-, intermediate- and post-translocation states. Specifically, we identified two novel translocation intermediates, in which the 30S subunit head domain tilts outward to release the translocated P-site transfer RNA. The structures of archaeal ribosomes provide insights into the archaeal translation and ribosome translocation.


Subject(s)
Ribosomes , Sulfolobus acidocaldarius , Cryoelectron Microscopy , Ribosomal Proteins/metabolism , Ribosomes/metabolism , RNA, Ribosomal/metabolism , RNA, Transfer/metabolism , Sulfolobus acidocaldarius/cytology , Sulfolobus acidocaldarius/metabolism
2.
J Integr Plant Biol ; 63(10): 1740-1752, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34002536

ABSTRACT

Photosystem I (PSI) is a large protein supercomplex that catalyzes the light-dependent oxidation of plastocyanin (or cytochrome c6 ) and the reduction of ferredoxin. This catalytic reaction is realized by a transmembrane electron transfer chain consisting of primary electron donor (a special chlorophyll (Chl) pair) and electron acceptors A0 , A1 , and three Fe4 S4 clusters, FX , FA , and FB . Here we report the PSI structure from a Chl d-dominated cyanobacterium Acaryochloris marina at 3.3 Å resolution obtained by single-particle cryo-electron microscopy. The A. marina PSI exists as a trimer with three identical monomers. Surprisingly, the structure reveals a unique composition of electron transfer chain in which the primary electron acceptor A0 is composed of two pheophytin a rather than Chl a found in any other well-known PSI structures. A novel subunit Psa27 is observed in the A. marina PSI structure. In addition, 77 Chls, 13 α-carotenes, two phylloquinones, three Fe-S clusters, two phosphatidyl glycerols, and one monogalactosyl-diglyceride were identified in each PSI monomer. Our results provide a structural basis for deciphering the mechanism of photosynthesis in a PSI complex with Chl d as the dominating pigments and absorbing far-red light.


Subject(s)
Chlorophyll/metabolism , Cyanobacteria/chemistry , Pheophytins/metabolism , Photosystem I Protein Complex/chemistry , Cryoelectron Microscopy , Cyanobacteria/metabolism , Cyanobacteria/ultrastructure , Electron Transport , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/ultrastructure , Protein Structure, Quaternary
3.
Cell ; 184(10): 2665-2679.e19, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33882274

ABSTRACT

The bacterial flagellar motor is a supramolecular protein machine that drives rotation of the flagellum for motility, which is essential for bacterial survival in different environments and a key determinant of pathogenicity. The detailed structure of the flagellar motor remains unknown. Here we present an atomic-resolution cryoelectron microscopy (cryo-EM) structure of the bacterial flagellar motor complexed with the hook, consisting of 175 subunits with a molecular mass of approximately 6.3 MDa. The structure reveals that 10 peptides protruding from the MS ring with the FlgB and FliE subunits mediate torque transmission from the MS ring to the rod and overcome the symmetry mismatch between the rotational and helical structures in the motor. The LP ring contacts the distal rod and applies electrostatic forces to support its rotation and torque transmission to the hook. This work provides detailed molecular insights into the structure, assembly, and torque transmission mechanisms of the flagellar motor.


Subject(s)
Flagella/physiology , Flagella/ultrastructure , Salmonella typhimurium/physiology , Cryoelectron Microscopy , Protein Conformation , Torque
4.
Science ; 370(6519)2020 11 20.
Article in English | MEDLINE | ID: mdl-33214250

ABSTRACT

The photosynthetic apparatus of green sulfur bacteria (GSB) contains a peripheral antenna chlorosome, light-harvesting Fenna-Matthews-Olson proteins (FMO), and a reaction center (GsbRC). We used cryo-electron microscopy to determine a 2.7-angstrom structure of the FMO-GsbRC supercomplex from Chlorobaculum tepidum The GsbRC binds considerably fewer (bacterio)chlorophylls [(B)Chls] than other known type I RCs do, and the organization of (B)Chls is similar to that in photosystem II. Two BChl layers in GsbRC are not connected by Chls, as seen in other RCs, but associate with two carotenoid derivatives. Relatively long distances of 22 to 33 angstroms were observed between BChls of FMO and GsbRC, consistent with the inefficient energy transfer between these entities. The structure contains common features of both type I and type II RCs and provides insight into the evolution of photosynthetic RCs.


Subject(s)
Bacterial Proteins/chemistry , Chlorobi/enzymology , Photosynthesis , Photosystem I Protein Complex/chemistry , Photosystem II Protein Complex/chemistry , Cryoelectron Microscopy , Cytoplasm/enzymology , Energy Transfer , Periplasm/enzymology , Protein Conformation
5.
Nat Commun ; 10(1): 4175, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31519889

ABSTRACT

Lipopolysaccharides (LPS) of Gram-negative bacteria are critical for the defence against cytotoxic substances and must be transported from the inner membrane (IM) to the outer membrane (OM) through a bridge formed by seven membrane proteins (LptBFGCADE). The IM component LptB2FG powers the process through a yet unclarified mechanism. Here we report three high-resolution cryo-EM structures of LptB2FG alone and complexed with LptC (LptB2FGC), trapped in either the LPS- or AMP-PNP-bound state. The structures reveal conformational changes between these states and substrate binding with or without LptC. We identify two functional transmembrane arginine-containing loops interacting with the bound AMP-PNP and elucidate allosteric communications between the domains. AMP-PNP binding induces an inward rotation and shift of the transmembrane helices of LptFG and LptC to tighten the cavity, with the closure of two lateral gates, to eventually expel LPS into the bridge. Functional assays reveal the functionality of the LptF and LptG periplasmic domains. Our findings shed light on the LPS transport mechanism.


Subject(s)
Adenylyl Imidodiphosphate/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Lipopolysaccharides/metabolism , Membrane Proteins/metabolism , Membrane Proteins/ultrastructure , Bacterial Proteins/chemistry , Cryoelectron Microscopy , Membrane Proteins/chemistry , Shigella flexneri
SELECTION OF CITATIONS
SEARCH DETAIL
...