Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 18(9): 5628-5632, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30109804

ABSTRACT

Elastic strain has the potential for a controlled manipulation of the band gap and spin-polarized Dirac states of topological materials, which can lead to pseudomagnetic field effects, helical flat bands, and topological phase transitions. However, practical realization of these exotic phenomena is challenging and yet to be achieved. Here we show that the Dirac surface states of the topological insulator Bi2Se3 can be reversibly tuned by an externally applied elastic strain. Performing in situ X-ray diffraction and in situ angle-resolved photoemission spectroscopy measurements during tensile testing of epitaxial Bi2Se3 films bonded onto a flexible substrate, we demonstrate elastic strains of up to 2.1% and quantify the resulting changes in the topological surface state. Our study establishes the functional relationship between the lattice and electronic structures of Bi2Se3 and, more generally, demonstrates a new route toward momentum-resolved mapping of strain-induced band structure changes.

2.
Nanotechnology ; 28(39): 395706, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28745615

ABSTRACT

Two-dimensional topological insulators show great promise for spintronic applications. Much attention has been placed on single atomic or molecular layers, such as bismuthene. The selections of such materials are, however, limited. To broaden the base of candidate materials with desirable properties for applications, we report herein an exploration of the physics of double layers of bismuthene and antimonene. The electronic structure of a film depends on the number of layers, and it can be modified by epitaxial strain, by changing the effective spin-orbit coupling strength, and by the manner in which the layers are geometrically stacked. First-principles calculations for the double layers reveal a number of phases, including topological insulators, topological semimetals, Dirac semimetals, trivial semimetals, and trivial insulators. Their phase boundaries and the stability of the phases are investigated. The results illustrate a rich pattern of phases that can be realized by tuning lattice strain and effective spin-orbit coupling.

3.
Phys Rev Lett ; 118(14): 146402, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28430465

ABSTRACT

Three-dimensional (3D) topological Dirac semimetals (TDSs) are rare but important as a versatile platform for exploring exotic electronic properties and topological phase transitions. A quintessential feature of TDSs is 3D Dirac fermions associated with bulk electronic states near the Fermi level. Using angle-resolved photoemission spectroscopy, we have observed such bulk Dirac cones in epitaxially grown α-Sn films on InSb(111), the first such TDS system realized in an elemental form. First-principles calculations confirm that epitaxial strain is key to the formation of the TDS phase. A phase diagram is established that connects the 3D TDS phase through a singular point of a zero-gap semimetal phase to a topological insulator phase. The nature of the Dirac cone crosses over from 3D to 2D as the film thickness is reduced.

4.
ACS Nano ; 10(3): 3859-64, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26932368

ABSTRACT

We report on the fabrication of a two-dimensional topological insulator Bi(111) bilayer on Sb nanofilms via a sequential molecular beam epitaxy growth technique. Our angle-resolved photoemission measurements demonstrate the evolution of the electronic band structure of the heterostructure as a function of the film thickness and reveal the existence of a two-dimensional spinful massless electron gas within the top Bi bilayer. Interestingly, our first-principles calculation extrapolating the observed band structure shows that, by tuning down the thickness of the supporting Sb films into the quantum dimension regime, a pair of isolated topological edge states emerges in a partial energy gap at 0.32 eV above the Fermi level as a consequence of quantum confinement effect. Our results and methodology of fabricating nanoscale heterostructures establish the Bi bilayer/Sb heterostructure as a platform of great potential for both ultra-low-energy-cost electronics and surface-based spintronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...