Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.986
Filter
1.
Animals (Basel) ; 14(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731261

ABSTRACT

Lactobacillus acidophilus (L. acidophilus), the most prevalent probiotic, has demonstrated the ability to improve the relative abundance of intestinal microorganisms and boost immunity. However, the underlying mechanisms of these effects remain unclear. This study evaluated body weight, nutrient apparent digestibility, serum indices, and bacterial communities in Chinese rural dogs from a L. acidophilus supplementation group (Lactobacillus acidophilus, n = 6) and a control group (CON, n = 6). The results indicated that L. acidophilus had no significant impact on the body weight and apparent nutrient digestibility of Chinese rural dogs. In comparison with the CON group, L. acidophilus significantly reduced the levels of cholesterol (CHO) and increased the levels of IgA, IFN-α, and T-AOC. Bacterial diversity indices were significantly reduced in the LAC group compared to the CON groups, and MetaStat analysis demonstrated notable distinctions in 14 bacterial genera between the groups. These bacterial genera exhibited correlations with physiological indices such as CHO, IgA, IFN-α, and T-AOC. In conclusion, L. acidophilus can modulate lipid metabolism, immunity, and antioxidant capacity by regulating the relative abundance of specific bacterial communities, which helps dogs to adapt to today's lifestyle.

2.
Lung Cancer ; 192: 107820, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38763104

ABSTRACT

INTRODUCTION: Dysregulated MET is an established oncogenic driver in non-small cell lung cancer (NSCLC). MET signaling may also suppress anticancer immune responses. Concomitant MET inhibition with capmatinib (a MET inhibitor) synergistically enhanced the efficacy of immunotherapies in murine cancer models, regardless of tumor dependency to MET signaling. Here, we report results of a multicenter, open-label, phase 2 study of capmatinib plus nivolumab (a PD-1 inhibitor) in patients with EGFR wild-type advanced NSCLC, previously treated with platinum-based chemotherapy. METHODS: Patients were allocated into high-MET or low-MET groups according to MET expression determined by immunohistochemistry, MET gene copy number as assessed by fluorescence in-situ hybridization, and presence of MET exon 14 skipping mutation, then received capmatinib 400 mg, oral, twice daily in combination with nivolumab 3 mg/kg intravenously every 2 weeks. The primary endpoint was investigator-assessed 6-month progression-free survival (PFS) rate per RECIST v1.1. RESULTS: The primary endpoint was met in both the high-MET (N = 16) and low-MET (N = 30) groups. In the high-MET and low-MET groups, respectively, the estimated mean 6-month PFS rate (95 % credible interval) by Bayesian analysis was 68.9 % (48.5-85.7) and 50.9 % (35.6-66.4). The Kaplan-Meier median PFS (95 % CI) was 6.2 months (3.5-19.2) and 4.2 months (1.8-7.4). The overall response rate (95 % CI) was 25.0 % (7.3-52.4) and 16.7 % (5.6-34.7). Most frequent treatment-related adverse events (≥30 % any grade, N = 46) were nausea (52.2 %), peripheral edema (34.8 %), and increased blood creatinine (30.4 %). CONCLUSIONS: Capmatinib plus nivolumab showed clinical activity and manageable safety in pretreated patients with advanced EGFR wild-type NSCLC, independent of MET status. TRIAL REGISTRATION: ClinicalTrials.gov NCT02323126.

3.
Mater Horiz ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764435

ABSTRACT

Wearable electronics are some of the most promising technologies with the potential to transform many aspects of human life such as smart healthcare and intelligent communication. The design of self-powered fabrics with the ability to efficiently harvest energy from the ambient environment would not only be beneficial for their integration with textiles, but would also reduce the environmental impact of wearable technologies by eliminating their need for disposable batteries. Herein, inspired by classical Archimedean spirals, we report a metastructured fiber fabricated by scrolling followed by cold drawing of a bilayer thin film of an MXene and a solid polymer electrolyte. The obtained composite fibers with a typical spiral metastructure (SMFs) exhibit high efficiency for dispersing external stress, resulting in simultaneously high specific mechanical strength and toughness. Furthermore, the alternating layers of the MXene and polymer electrolyte form a unique, tandem ionic-electronic coupling device, enabling SMFs to generate electricity from diverse environmental parameters, such as mechanical vibrations, moisture gradients, and temperature differences. This work presents a design rule for assembling planar architectures into robust fibrous metastructures, and introduces the concept of ionic-electronic coupling fibers for efficient multimodal energy harvesting, which have great potential in the field of self-powered wearable electronics.

4.
Commun Biol ; 7(1): 603, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769470

ABSTRACT

The Northern Hemisphere temperate forests exhibit a disjunct distributional pattern in Europe, North America, and East Asia. Here, to reveal the promoter of intercontinental disjunct distribution, Fraxinus was used as a model organism to integrate abundant fossil evidence with high-resolution phylogenies in a phytogeographic analysis. We constructed a robust phylogenetic tree using genomic data, reconstructed the geographic ancestral areas, and evaluated the effect of incorporating fossil information on the reconstructed biogeographic history. The phylogenetic relationships of Fraxinus were highly resolved and divided into seven clades. Fraxinus originated in western North America during Eocene, and six intercontinental dispersal events and five intercontinental vicariance events were occured. Results suggest that climate change and vicariance contributed to the intercontinental disjunct distribution pattern of Fraxinus. Moreover, results highlight the necessity of integrating phylogenetic relationship and fossil to improve the reliability of inferred biogeographic events and our understanding of the processes underlying disjunct distributions.


Subject(s)
Climate Change , Fossils , Fraxinus , Phylogeny , Phylogeography , Fraxinus/genetics , Plant Dispersal
5.
Mol Biol Evol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768215

ABSTRACT

High mountains harbor a considerable proportion of biodiversity, but we know little about how diverse plants adapt to the harsh environment. Here we finished a high-quality genome assembly for Dasiphora fruticosa, an ecologically important plant distributed in the Qinghai-Tibetan Plateau and lowland of the Northern Hemisphere, and resequenced 592 natural individuals to address how this horticulture plant adapts to highland. Demographic analysis revealed D. fruticosa underwent a bottleneck after Naynayxungla Glaciation. Selective sweep analysis of two pairs of lowland and highland population identified 63 shared genes related to cell wall organization or biogenesis, cellular component organization, and dwarfism, suggesting parallel adaptation to highland habitats. Most importantly, we found that stronger purging of estimated genetic load due to inbreeding in highland populations apparently contributed to their adaptation to the highest mountain. Our results revealed how plants could tolerate the extreme plateau, which could provide potential insights for species conservation and crop breeding.

6.
Inorg Chem ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768636

ABSTRACT

Selective actinide coordination (from lanthanides) is critical for both nuclear waste management and sustainable development of nuclear power. Hydrophilic ligands used as masking agents to withhold actinides in the aqueous phase are currently highly pursued, while synthetic accessibility, water solubility, acid resistance, and extraction capability are the remaining problems. Most reported hydrophilic ligands are only effective at low acidity. We recently proved that the phenanthroline diimide skeleton was an efficient building block for the construction of highly efficient acid-resistant hydrophilic lanthanide/actinide separation agents, while the limited water solubility hindered the loading capability of the ligand. Herein, amine was introduced as the terminal solubilizing group onto the phenanthroline diimide backbone, which after protonation in acid showed high water solubility. The positively charged terminal amines enhanced the ligand water solubility to a large extent, which, on the other side, was believed to be detrimental for the coordination and complexation of the metal cations. We showed that by delicately adjusting the alkyl chain spacing, this intuitive disadvantage could be relieved and superior extraction performances could be achieved. This work holds significance for both hydrophilic lanthanide/actinide separation ligand design and, concurrently, offers insights into the development of water-soluble lanthanide/actinide complexes for biomedical and bioimaging applications.

7.
J Am Chem Soc ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775440

ABSTRACT

Unraveling the catalyst surface structure and behavior during reactions is essential for both mechanistic understanding and performance optimization. Here we report a phenomenon of facet-dependent surface restructuring intrinsic to ß-Ni(OH)2 catalysts during oxygen evolution reaction (OER), discovered by the correlative ex situ and operando characterization. The ex situ study after OER reveals ß-Ni(OH)2 restructuring at the edge facets to form nanoporous Ni1-xO, which is Ni deficient containing Ni3+ species. Operando liquid transmission electron microscopy (TEM) and Raman spectroscopy further identify the active role of the intermediate ß-NiOOH phase in both the OER catalysis and Ni1-xO formation, pinpointing the complete surface restructuring pathway. Such surface restructuring is shown to effectively increase the exposed active sites, accelerate Ni oxidation kinetics, and optimize *OH intermediate bonding energy toward fast OER kinetics, which leads to an extraordinary activity enhancement of ∼16-fold. Facilitated by such a self-activation process, the specially prepared ß-Ni(OH)2 with larger edge facets exhibits a 470-fold current enhancement than that of the benchmark IrO2, demonstrating a promising way to optimize metal-(oxy)hydroxide-based catalysts.

8.
Adv Mater ; : e2403853, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718418

ABSTRACT

Superhydrophobic materials are attractive for industrial development but plagued by poor mechanical stability. Herein, a superdurable full-life superhydrophobic composite block is designed and fabricated by embedding near-zero contractive superhydrophobic silica aerogel into a rigid iron-nickel foam structured similarly to a regular dodecahedron. The synergistic protection afforded by these materials ensures superrobust mechanical stability for the composite block, which features a high compressive strength of up to ≈7.4 MPa, and ultralow Taber abrasion of down to ≈0.567 mm after withstanding 50 000 cycles, and highly efficient water harvesting capability of up to ≈3114.3 mg min-1 cm-2 at a supercooling degree of 40 K. This robust material system provides a novel strategy to design superhydrophobic materials capable of withstanding extreme conditions, including high temperature, humidity, pressure, and abrasion.

9.
BMC Infect Dis ; 24(1): 493, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745170

ABSTRACT

BACKGROUND: Diet plays an important role in Helicobacter pylori (HP) infection, and our objective was to investigate potential connections between dietary patterns, specific food groups, and HP infection status in U.S. adults. METHODS: The data for this study was obtained from the NHANES (National Health and Nutrition Survey) database for the year 1999-2000. This cross-sectional study involved the selection of adults aged 20 years and older who had undergone dietary surveys and HP testing. Factor analysis was employed to identify dietary patterns, and logistic regression models were utilized to assess the association between these dietary patterns and specific food groups with HP infection status. RESULT: Based on the inclusion and exclusion criteria, our final analysis included 2,952 individuals. The median age of participants was 51.0 years, and 48.7% were male. In the study population, the overall prevalence of HP infection was 44.9%. Factor analysis revealed three distinct dietary patterns: High-fat and high-sugar pattern (including solid fats, refined grains, cheese, and added sugars); Vegetarian pattern (comprising fruits, juices, and whole grains); Healthy pattern (encompassing vegetables, nuts and seeds, and oils). Adjusted results showed that the high-fat and high-sugar pattern (OR = 0.689, 95% CI: 0.688-0.690), vegetarian pattern (OR = 0.802, 95% CI: 0.801-0.803), and healthy pattern (OR = 0.717, 95% CI: 0.716-0.718) were all linked to a lower likelihood of HP infection. Further analysis of the high-fat and high-sugar pattern revealed that solid fats (OR = 0.717, 95% CI: 0.716-0.718) and cheese (OR = 0.863, 95% CI: 0.862-0.864) were protective factors against HP infection, while refined grains (OR = 1.045, 95% CI: 1.044-1.046) and added sugars (OR = 1.014, 95% CI: 1.013-1.015) were identified as risk factors for HP infection. CONCLUSION: Both the Vegetarian pattern and the Healthy pattern are associated with a reduced risk of HP infection. Interestingly, the High-fat and High-sugar pattern, which is initially considered a risk factor for HP infection when the score is low, becomes a protective factor as the intake increases. Within this pattern, animal foods like solid fats and cheese play a protective role, while the consumption of refined grains and added sugars increases the likelihood of HP infection.


Subject(s)
Cheese , Helicobacter Infections , Helicobacter pylori , Nutrition Surveys , Humans , Male , Cross-Sectional Studies , Helicobacter Infections/epidemiology , Middle Aged , Female , Cheese/microbiology , Adult , Diet , Dietary Fats , Aged , Young Adult , Prevalence , Risk Factors , United States/epidemiology , Feeding Behavior
10.
J Nanobiotechnology ; 22(1): 250, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750519

ABSTRACT

The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.


Subject(s)
Bone Regeneration , Calcium Phosphates , Osteogenesis , Osteosarcoma , Tissue Scaffolds , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Animals , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Rabbits , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Osteogenesis/drug effects , Polyesters/chemistry , Humans , Cell Differentiation/drug effects , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Bone Neoplasms/therapy , Cell Line, Tumor , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Schwann Cells/drug effects , Nanofibers/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Selenium/chemistry , Selenium/pharmacology
11.
Adv Sci (Weinh) ; : e2400972, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718307

ABSTRACT

Bioinspired micropillar adhesives have shown broad application prospects in space capture and docking, due to their strong adhesion, good environmental adaptability, and reusability. However, when performing space missions, unavoidable contact collision with target objects may cause large deformation of the micropillars, resulting in the loss of adhesion ability. This study reports a novel micropillar adhesive through the in-plane combination of micropillars (IPCM) with different aspect ratios, consisting of small pillars for retaining strong adhesion and large ones for resisting overload-induced adhesion failure. It is demonstrated that the IPCM array can still maintain 85% of the adhesion peak after static large deformation compared to a general micropillar array composed of the same pillars. The impact of element size and layout of the IPCM, as well as detachment velocity on adhesion performance under high preload is discussed. Furthermore, finite element contact analysis qualitatively reproduces the experimentally observed micropillar deformations and attributes the overload-induced adhesion failure to the redistribution of surface normal stress. Finally, the potential application of the IPCM in dynamic capture is demonstrated on different objects. The proposed IPCM opens up new design concepts for practical applications of bioinspired adhesives in space capture and docking.

12.
Patient Relat Outcome Meas ; 15: 121-130, 2024.
Article in English | MEDLINE | ID: mdl-38706693

ABSTRACT

Background: The High Activity Arthroplasty Score (HAAS) is a validated score that assesses functional outcomes after lower limb arthroplasty, with fewer ceiling effects than other scores. The aim is to translate and cross-culturally adapt the HAAS into a Chinese version (HAAS-C) and to evaluate the psychometric properties of HAAS-C in patients after primary total knee arthroplasty (TKA). Methods: A total of 104 patients diagnosed with knee osteoarthritis who had undergone TKA at least 12 months prior were recruited. A forward and backward translation procedure was performed for developing a culturally acceptable HAAS-C. Internal consistency was assessed using Cronbach's α, and test-retest reliability was measured using the intraclass correlation coefficient (ICC) within a 10-day interval. Construct validity was assessed by examining the correlations between HAAS-C and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), EuroQoL Group's five-dimension questionnaire (EQ-5D-5L), and Oxford knee score (OKS). Results: HAAS-C demonstrated adequate Internal consistency reliability, as indicated by Cronbach's α coefficient of 0.75. Test-retest reliability yielded excellent results, with an ICC value of 0.98. Content validity indices were high, with a scale-level validity index of 0.9 and item-level validity indices greater than or equal to 0.8. HAAS-C showed a strong correlation with WOMAC (r = 0.69), a moderate correlation with EQ-5D-5L (r = 0.43), and OKS (r = 0.53) while exhibiting no floor or ceiling effects. Conclusion: The validated HAAS-C questionnaire is a valid instrument for assessing patients undergoing TKA in mainland China.

13.
Acta Pharmacol Sin ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760544

ABSTRACT

Cardiac fibrosis is a detrimental pathological process, which constitutes the key factor for adverse cardiac structural remodeling leading to heart failure and other critical conditions. Circular RNAs (circRNAs) have emerged as important regulators of various cardiovascular diseases. It is known that several circRNAs regulate gene expression and pathological processes by binding miRNAs. In this study we investigated whether a novel circRNA, named circNSD1, and miR-429-3p formed an axis that controls cardiac fibrosis. We established a mouse model of myocardial infarction (MI) for in vivo studies and a cellular model of cardiac fibrogenesis in primary cultured mouse cardiac fibroblasts treated with TGF-ß1. We showed that miR-429-3p was markedly downregulated in the cardiac fibrosis models. Through gain- and loss-of-function studies we confirmed miR-429-3p as a negative regulator of cardiac fibrosis. In searching for the upstream regulator of miR-429-3p, we identified circNSD1 that we subsequently demonstrated as an endogenous sponge of miR-429-3p. In MI mice, knockdown of circNSD1 alleviated cardiac fibrosis. Moreover, silence of human circNSD1 suppressed the proliferation and collagen production in human cardiac fibroblasts in vitro. We revealed that circNSD1 directly bound miR-429-3p, thereby upregulating SULF1 expression and activating the Wnt/ß-catenin pathway. Collectively, circNSD1 may be a novel target for the treatment of cardiac fibrosis and associated cardiac disease.

14.
Sci Rep ; 14(1): 11237, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755283

ABSTRACT

Osteoarthritis (OA) is the most prevalent form of arthritis, characterized by a complex pathogenesis. One of the key factors contributing to its development is the apoptosis of chondrocytes triggered by oxidative stress. Involvement of peroxisome proliferator-activated receptor gamma (PPARγ) has been reported in the regulation of oxidative stress. However, there remains unclear mechanisms that through which PPARγ influences the pathogenesis of OA. The present study aims to delve into the role of PPARγ in chondrocytes apoptosis induced by oxidative stress in the context of OA. Primary human chondrocytes, both relatively normal and OA, were isolated and cultured for the following study. Various assessments were performed, including measurements of cell proliferation, viability and cytotoxicity. Additionally, we examined cell apoptosis, levels of reactive oxygen species (ROS), nitric oxide (NO), mitochondrial membrane potential (MMP) and cytochrome C release. We also evaluated the expression of related genes and proteins, such as collagen type II (Col2a1), aggrecan, inducible nitric oxide synthase (iNOS), caspase-9, caspase-3 and PPARγ. Compared with relatively normal cartilage, the expression of PPARγ in OA cartilage was down-regulated. The proliferation of OA chondrocytes decreased, accompanied by an increase in the apoptosis rate. Down-regulation of PPARγ expression in OA chondrocytes coincided with an up-regulation of iNOS expression, leading to increased secretion of NO, endogenous ROS production, and decrease of MMP levels. Furthermore, we observed the release of cytochrome C, elevated caspase-9 and caspase-3 activities, and reduction of the components of extracellular matrix (ECM) Col2a1 and aggrecan. Accordingly, utilization of GW1929 (PPARγ Agonists) or Z-DEVD-FMK (caspase-3 inhibitor) can protect chondrocytes from mitochondrial-related apoptosis and alleviate the progression of OA. During the progression of OA, excessive oxidative stress in chondrocytes leads to apoptosis and ECM degradation. Activation of PPARγ can postpone OA by down-regulating caspase-3-dependent mitochondrial apoptosis pathway.


Subject(s)
Apoptosis , Caspase 3 , Chondrocytes , Mitochondria , Osteoarthritis , PPAR gamma , Reactive Oxygen Species , Humans , Chondrocytes/metabolism , Chondrocytes/pathology , PPAR gamma/metabolism , Caspase 3/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , Membrane Potential, Mitochondrial , Cell Proliferation , Nitric Oxide/metabolism , Cells, Cultured , Middle Aged , Aged , Female , Male
15.
World J Urol ; 42(1): 302, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720010

ABSTRACT

PURPOSE: To evaluate the diagnostic performance of contrast-enhanced (CE) ultrasound using Sonazoid (SNZ-CEUS) by comparing with contrast-enhanced computed tomography (CE-CT) and contrast-enhanced magnetic resonance imaging (CE-MRI) for differentiating benign and malignant renal masses. MATERIALS AND METHODS: 306 consecutive patients (from 7 centers) with renal masses (40 benign tumors, 266 malignant tumors) diagnosed by both SNZ-CEUS, CE-CT or CE-MRI were enrolled between September 2020 and February 2021. The examinations were performed within 7 days, but the sequence was not fixed. Histologic results were available for 301 of 306 (98.37%) lesions and 5 lesions were considered benign after at least 2 year follow-up without change in size and image characteristics. The diagnostic performances were evaluated by sensitivity, specificity, positive predictive value, negative predictive value, and compared by McNemar's test. RESULTS: In the head-to-head comparison, SNZ-CEUS and CE-MRI had comparable sensitivity (95.60 vs. 94.51%, P = 0.997), specificity (65.22 vs. 73.91%, P = 0.752), positive predictive value (91.58 vs. 93.48%) and negative predictive value (78.95 vs. 77.27%); SNZ-CEUS and CE-CT showed similar sensitivity (97.31 vs. 96.24%, P = 0.724); however, SNZ-CEUS had relatively lower than specificity than CE-CT (59.09 vs. 68.18%, P = 0.683). For nodules > 4 cm, CE-MRI demonstrated higher specificity than SNZ-CEUS (90.91 vs. 72.73%, P = 0.617) without compromise the sensitivity. CONCLUSIONS: SNZ-CEUS, CE-CT, and CE-MRI demonstrate desirable and comparable sensitivity for the differentiation of renal mass. However, the specificity of all three imaging modalities is not satisfactory. SNZ-CEUS may be a suitable alternative modality for patients with renal dysfunction and those allergic to gadolinium or iodine-based agents.


Subject(s)
Contrast Media , Ferric Compounds , Iron , Kidney Neoplasms , Magnetic Resonance Imaging , Oxides , Tomography, X-Ray Computed , Ultrasonography , Humans , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/pathology , Male , Female , Middle Aged , Prospective Studies , Ultrasonography/methods , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging/methods , Aged , Diagnosis, Differential , Adult , Aged, 80 and over
16.
Nanomaterials (Basel) ; 14(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38727366

ABSTRACT

The surface modification of amorphous carbon nanospheres (ACNs) through templates has attracted great attention due to its great success in improving the electrochemical properties of lithium storage materials. Herein, a safe methodology with toluene as a soft template is employed to tailor the nanostructure, resulting in ACNs with tunable surface pores. Extensive characterizations through transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption isotherms elucidate the impact of surface pore modifications on the external structure, morphology, and surface area. Electrochemical assessments reveal the enhanced performance of the surface-pore-modified carbon nanospheres, particularly ACNs-100 synthesized with the addition of 100 µL toluene, in terms of the initial discharge capacity, rate performance, and cycling stability. The interesting phenomenon of persistent capacity increase is ascribed to lithium ion movement within the graphite-like interlayer, resulting in ACNs-100 experiencing a capacity upswing from an initial 320 mAh g-1 to a zenith of 655 mAh g-1 over a thousand cycles at a rate of 2 C. The findings in this study highlight the pivotal role of tailored nanostructure engineering in optimizing energy storage materials.

17.
RSC Adv ; 14(19): 13361-13366, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38689826

ABSTRACT

A self-powered photodetector (PD) based on n-type ZnO/p-type small-molecule copper(ii) phthalocyanine (CuPc) inorganic/organic heterojunction film deposited on FTO substrate was constructed by simple solution spin-coating and thermal evaporation technology. The designed heterojunction device exhibits typical photoresponse behavior under zero bias, indicating that the device possesses a self-powered characteristic. This may benefit from the formation of a built-in electric field in the heterojunction, which can effectively separate electron-hole pairs. Specifically, the optimal performances of the device appear at a wavelength of 365 nm and light intensity of 0.03 mW cm-2, achieving on/off ratio of ∼245.88 (29.88), responsivity (Rp) of ∼227.11 mA W-1 (0.39 mA W-1), detectivity (D*) of ∼7.63 × 1011 Jones (∼7.53 × 109 Jones) and EQE of ∼77.23% (0.14%) at +2 V (0 V) bias voltage. In addition, the device has potential application in weak light detection. Therefore, the construction of inorganic/organic heterojunctions may provide a feasible strategy for the development of high-performance, self-powered and wavelength-selective PDs.

18.
Phys Rev Lett ; 132(12): 126504, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38579213

ABSTRACT

The quantum spin hall (QSH) phase, also known as the 2D topological insulator, is characterized by protected helical edge modes arising from time reversal symmetry. While initially proposed as band insulators, this phase can also manifest in strongly correlated systems where conventional band theory fails. To overcome the challenge of simulating this phase in realistic correlated models, we propose a novel framework utilizing fermionic tensor network states. Our approach involves constructing a tensor representation of the fixed-point wave function based on an exact solvable model, enabling us to derive a set of tensor equations governing the transformation rules of local tensors under symmetry operations. These tensor equations lead to the anomalous edge theory, which provides a comprehensive description of the QSH phase. By solving these tensor equations, we obtain variational ansatz for the QSH phase, which we subsequently verify its topological properties through numerical calculations. This method serves as an initial step toward employing tensor algorithms to simulate the QSH phase in strongly correlated systems, opening new avenues for investigating and understanding topological phenomena in complex materials.

20.
Inorg Chem ; 63(15): 6845-6853, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38568878

ABSTRACT

Bis(2,4,4-trimethylpentyl)dithiophosphinic acid, commonly referred to as HBTMPDTP or Cyanex301, is a sulfur-donating ligand that shows considerable promise in the challenging task of separating trivalent actinides (An3+) from lanthanides (Ln3+). Although its effectiveness has been established, the specific molecular details about the preference of HBTMPDTP for americium over europium have remained a mystery, puzzling researchers for over two decades. This study presents a comprehensive, dual-driven separation mechanism for this complex system combining experimental and theoretical approaches. A critical finding is the increased covalency in An-S bonds compared to Ln-S bonds, which plays a significant role in HBTMPDTP's intrinsic selectivity for An3+ over Ln3+. This leads to the formation of distinct An3+ and Ln3+ species, enhancing the ligand's actinide selectivity. Additionally, it provides crucial insights into the coordination chemistry of f-elements with sulfur-donating ligands, thereby deepening our understanding of this intricate field.

SELECTION OF CITATIONS
SEARCH DETAIL
...