Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 447: 130808, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36669400

ABSTRACT

Biodegradation is one of the safest and most economical methods for the elimination of toxic chlorophenols and crude oil from the environment. In this study, aerobic degradation of the aforementioned compounds by composite microbial agent B-Cl, which consisted of Bacillus B1 and B2 in a 3:2 ratio, was analyzed. The biodegradation mechanism of B-Cl was assessed based on whole genome sequencing, Fourier transform infrared spectroscopy and gas chromatographic analyses. B-Cl was most effective at reducing Cl- concentrations (65.17%) and crude oil biodegradation (59.18%) at 7 d, which was when the content of alkanes ≤ C30 showed the greatest decrease. Furthermore, adding B-Cl solution to soil significantly decreased the 2,4-DCP and oil content to below the detection limit and by 80.68%, respectively, and reconstructed of the soil microbial into a system containing more CPs-degrading (exaA, frmA, L-2-HAD, dehH, ALDH, catABE), aromatic compounds-degrading (pcaGH, catAE, benA-xylX, paaHF) and alkane- and fatty acid-degrading (alkB, atoB, fadANJ) microorganisms. Moreover, the presence of 2,4-DCP was the main hinder of the observed effects. This study demonstrates the importance of adding B-Cl solution to determine the interplay of CPs with microbes and accelerating oil degradation, which can be used for in-situ bioremediation of CPs and oil-contaminated soil.


Subject(s)
Microbiota , Petroleum , Soil Pollutants , Biodegradation, Environmental , Bacteria/genetics , Bacteria/metabolism , Petroleum/metabolism , Soil Microbiology , Alkanes/metabolism , Soil , Soil Pollutants/metabolism
2.
Food Chem ; 371: 131115, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34555710

ABSTRACT

The total antioxidant capacity (TAC) has become increasingly vital for evaluating antioxidant food quality in the field of healthcare. Herein, a convenient and sensitive method for TAC assay was proposed based on the absorbance difference of reaction systems between various antioxidants existed in food and Dex-FeMnzyme/oxTMB. Under the optimum condition, the limit of detection (LOD) of the colorimetric sensor was 1.17 µM with the linear concentration range from 1 µM to 30 µM. The analysis results demonstrated the excellent feasibility of practical application in fruit and vegetable food, which offered a new avenue for the establishment of colorimetric biosensors.


Subject(s)
Antioxidants , Fruit , Antioxidants/analysis , Colorimetry , Dextrans , Fruit/chemistry , Oxidation-Reduction , Oxidoreductases , Vegetables
3.
Nanomaterials (Basel) ; 13(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36616034

ABSTRACT

Biomass pyrolysis is an important way to produce biofuel. It is a chemical reaction process significantly involving heat, in which the heating rate will affect the yield and composition (or quality) of the generated biofuel. Therefore, the heat transfer inside the biomass pellets is important for determining the rate of temperature rise in the pellets. The accurate knowledge of the thermophysical properties of biomass pellets is required to clarify the process and mechanism of heat transfer in the particles and in the reactor. In this work, based on the transient thermoelectric technology, a continuous in situ thermal characterization method for a dynamic heating process is proposed. Multiple thermophysical properties, including thermal conductivity and volumetric heat capacity for corn leaves, are measured simultaneously within a heating process. In temperatures lower than 100 °C, the volumetric heat capacity slightly increases while the thermal conductivity decreases gradually due to the evaporation of water molecules. When the temperature is higher than 100 °C, the organic components in the corn leaves are cracked and carbonized, leading to the increase in the thermal conductivity and the decrease in the volumetric heat capacity against temperature.

4.
Oncol Lett ; 18(3): 2967-2976, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31404307

ABSTRACT

Chloride channel accessory (CLCA) is a gene family that encode Ca2+ activated chloride channels, which make a substantial contribution to various diseases. The aim of the present study was to investigate the prognostic value of CLCA expression in colon cancer. In an attempt to elucidate the value of CLCA mRNA expression in the prognosis of patients with colon cancer, the gene expression data of 438 patients with colon cancer were analyzed. The source of the data was The Cancer Genome Atlas, and it was identified that high expression levels of CLCA1 and CLCA2 were associated with a favorable overall survival (OS) time in patients with colon cancer. As revealed by joint effects analysis, the co-occurrence of high expression levels of CLCA1 and CLCA2 was associated with a favorable OS time in patients with colon cancer. CLCA genes were investigated using gene set enrichment analysis. The results of the bioinformatics analysis demonstrated that high expression levels of CLCA1 and CLCA2 were associated with the prognosis of colon cancer. These findings suggest that CLCA1 and CLCA2 are potential prognostic biomarkers for patients with colon cancer. Furthermore, combining CLCA1 and CLCA2 can enhance the sensitivity of the prediction of the OS time of patients with colon cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...