Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Cancer Lett ; 592: 216922, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38704137

ABSTRACT

Lung adenocarcinoma (LUAD), a type of non-small cell lung cancer (NSCLC), originates from not only bronchial epithelial cells but also alveolar type 2 (AT2) cells, which could differentiate into AT2-like cells. AT2-like cells function as cancer stem cells (CSCs) of LUAD tumorigenesis to give rise to adenocarcinoma. However, the mechanism underlying AT2 cell differentiation into AT2-like cells in LUAD remains unknown. We analyze genes differentially expressed and genes with significantly different survival curves in LUAD, and the combination of these two analyses yields 147 differential genes, in which 14 differentially expressed genes were enriched in cell cycle pathway. We next analyze the protein levels of these genes in LUAD and find that Cyclin-A2 (CCNA2) is closely associated with LUAD tumorigenesis. Unexpectedly, high CCNA2 expression in LUAD is restrictedly associated with smoking and independent of other driver mutations. Single-cell sequencing analyses reveal that CCNA2 is predominantly involved in AT2-like cell differentiation, while inhibition of CCNA2 significantly reverses smoking-induced AT2-like cell differentiation. Mechanistically, CCNA2 binding to CDK2 phosphorylates the AXIN1 complex, which in turn induces ubiquitination-dependent degradation of ß-catenin and inhibits the WNT signaling pathway, thereby failing AT2 cell maintenance. These results uncover smoking-induced CCNA2 overexpression and subsequent WNT/ß-catenin signaling inactivation as a hitherto uncharacterized mechanism controlling AT2 cell differentiation and LUAD tumorigenesis.


Subject(s)
Adenocarcinoma of Lung , Carcinogenesis , Cell Differentiation , Cyclin A2 , Lung Neoplasms , Smoking , Animals , Female , Humans , Male , Mice , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , beta Catenin/metabolism , beta Catenin/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Cyclin A2/genetics , Cyclin A2/metabolism , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Smoking/adverse effects , Wnt Signaling Pathway/genetics , Rats
2.
Nat Commun ; 15(1): 987, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307877

ABSTRACT

Aberrant activation of sonic hedgehog (SHH) signaling and its effector transcriptional factor GLI1 are essential for oncogenesis of SHH-dependent medulloblastoma (MBSHH) and basal cell carcinoma (BCC). Here, we show that SHH inactivates p38α (MAPK14) in a smoothened-dependent manner, conversely, p38α directly phosphorylates GLI1 on Ser937/Ser941 (human/mouse) to induce GLI1's proteasomal degradation and negates the transcription of SHH signaling. As a result, Gli1S941E loss-of-function knock-in significantly reduces the incidence and severity of smoothened-M2 transgene-induced spontaneous MBSHH, whereas Gli1S941A gain-of-function knock-in phenocopies Gli1 transgene in causing BCC-like proliferation in skin. Correspondingly, phospho-Ser937-GLI1, a destabilized form of GLI1, positively correlates to the overall survival rate of children with MBSHH. Together, these findings indicate that SHH-induced p38α inactivation and subsequent GLI1 dephosphorylation and stabilization in controlling SHH signaling and may provide avenues for future interventions of MBSHH and BCC.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Animals , Child , Humans , Mice , Cerebellar Neoplasms/genetics , Hedgehog Proteins/metabolism , Medulloblastoma/genetics , Medulloblastoma/pathology , Oncogenes , Phosphorylation , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
4.
Urol J ; 21(2): 87-97, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-37245087

ABSTRACT

PURPOSE: The present study aimed to develop nomograms based on the SEER database to predict the prognosis for patients with primary sarcomatoid carcinoma of the urinary bladder (SCUB). MATERIALS AND METHODS: Patients with primary SCUB were identified in the Surveillance, Epidemiology, and End Results (SEER) database, between 1975 and 2017. Univariate and multivariable Cox analysis were conducted to identify the independent prognostic factors for developing the overall survival (OS) and cancer-specific survival (CSS) nomograms. Then, concordance index (C-index), receiver operating characteristic (ROC) curve and calibration curve were used to evaluate the accuracy of the nomogram model. In addition, the model was further compared with TNM staging system. RESULTS: A total of 238 eligible patients with primary SCUB were selected from the SEER database. As suggested by Cox-analysis, age, sex, T stage, M stage, tumor size, and surgery type of primary site were identified as the independent factors for predicting both OS and CSS. We developed OS and CSS nomograms with a favorable C-index by using these prognostic factors. The C-indexes of the OS and CSS nomogram in the present study were 0.738 (0.701-0.775) and 0.763 (0.724-0.802), which were superior to those of the AJCC TNM staging with 0.621 (0.576-0.666) and 0.637 (0.588-0.686) respectively, showing better discriminatory ability. Subsequently, the ROC curves showed that the 1-, 3- and 5-year AUCs (area under the curve) of OS nomogram (i.e., 0.793, 0.807 and 0.793) were higher than those of the TNM stage((i.e., 0.659, 0.676, 0.659). Similarly, as for CSS model, them ((i.e., 0.823, 0.804 and 0.804) were aslo exceed those of TNM stage((i.e., 0.683, 0.682, 0.682). Furthermore, the calibration curves indicated a good consistency between the predictive survival and the actual survival. Finally, patients were stratified by risk, and Kaplan-Meier survival curve suggested that the prognosis of the low-risk group was significantly better than that of the high-risk group. CONCLUSION: We developed nomograms with the SEER database, which could help predict the prognosis of SCUB individuals more accurately.


Subject(s)
Carcinoma , Urinary Bladder Neoplasms , Humans , Nomograms , Prognosis , Urinary Bladder , Pelvis , Neoplasm Staging
5.
Biomed Pharmacother ; 170: 115986, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056232

ABSTRACT

Infections like COVID-19 are the primary cause of death around the world because they can cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and sepsis. Inflammatory cells serve as crucial protective barriers in these diseases. However, excessive accumulation of inflammatory cells is also one of the major causes of organ damage. The non-muscular myosin light chain kinase (nmMLCK) plays crucial of cytoskeletal components involved in endothelial cell-matrix and cell-cell adhesion, integrity, and permeability. Our previous investigations found that ML-7, a specific inhibitor of MLCK, promoted neutrophil apoptosis through various signaling pathways. In this study, we found that knockout of MLCK significantly promote apoptosis of neutrophils and macrophages in the BALF of the LPS-induced ALI, meanwhile it had no effect on the apoptosis of neutrophils in the circulatory system. RNA-sequencing revealed that the effect of MLCK knockout in inducing apoptosis of inflammatory cells was mediated through lysosomes. Administering ML-7 into the lungs significantly promoted neutrophil apoptosis, accelerating their clearance. In the LPS- or CLP-induced sepsis models, ML-7 administration significantly improves the apoptosis of inflammatory cells, especially neutrophils, at the infection site but had no impact on neutrophils in the circulatory system. ML-7 also significantly improved the survival rate of mice with LPS- or CLP-induced sepsis. Taken together, we found that MLCK plays a crucial role in the survival of inflammatory cells at the infection site. Inhibiting MLCK significantly induces apoptosis of inflammatory cells at the infection site, promoting inflammation resolution, with no impact of the circulatory system.


Subject(s)
Acute Lung Injury , Sepsis , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Apoptosis , Lipopolysaccharides/adverse effects , Lung , Myosin-Light-Chain Kinase/metabolism
7.
Chem Biol Drug Des ; 103(1): e14380, 2024 01.
Article in English | MEDLINE | ID: mdl-37890873

ABSTRACT

Labeled with pluripotent potential, the transplantation of bone marrow mesenchymal stem cells (BMSCs) is considered as a promising strategy for treating osteoporosis (OP). Melatonin (MEL) has been investigated to be an essential regulator involved in bone metabolism, as well as BMSCs differentiation. Circular RNAs (circRNAs) are a unique kind of non-coding RNA and play an important regulatory role in OP. However, whether circRNAs are implicated in the effects of MEL on BMSCs osteogenic differentiation remains largely indeterminate. Expression of circ_0005753 in human BMSCs with MEL treatment, clinical specimens diagnosed with OP, either with ovariectomy (OVX)-induced mice, was measured by RT-qPCR. Western blot was conducted to analyze protein levels of osteogenesis-related molecules (Opg, RUNX2, ALP, BMP4) and TXNIP. RNA immunoprecipitation (RIP) and RNA pull-down assays were performed to validate the binding relationship among circ_0005753, PTBP1, and TXNIP. Alkaline phosphatase (ALP) and alizarin red staining (ARS) were performed to evaluate osteogenic capacity of BMSCs. OP mouse model was established by ovariectomy, as evaluated pathologic changes via hematoxylin-eosin (HE), Masson, and Immunohistochemistry (IHC) staining. Expression of circ_0005753 was remarkably decreased during MEL-induced osteogenic differentiation of BMSCs. Interestingly, not only circ_0005753 knockdown significantly promoted osteogenic differentiation of BMSCs, but circ_0005753 overexpression also weakened osteogenic differentiation induced by MEL treatment. Mechanistically, circ_0005753 maintained the stabilization of TXNIP mRNA via recruiting PTBP1. Additionally, reinforced circ_0005753 abrogated MEL-mediated protective effects on OP pathogenesis in a mouse model. This work shows that MEL facilitates osteogenic differentiation of BMSCs via the circ_0005753/PTBP1/TXNIP axis, which may shed light on the development of a novel therapeutic strategy to prevent OP.


Subject(s)
Melatonin , Mesenchymal Stem Cells , MicroRNAs , Osteoporosis , Female , Mice , Humans , Animals , Osteogenesis , Melatonin/pharmacology , RNA, Circular/genetics , RNA, Circular/analysis , RNA, Circular/metabolism , Cells, Cultured , Osteoporosis/drug therapy , Osteoporosis/genetics , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Disease Models, Animal , MicroRNAs/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/analysis , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Polypyrimidine Tract-Binding Protein/analysis , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/pharmacology , Carrier Proteins/metabolism
8.
EClinicalMedicine ; 65: 102273, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37954906

ABSTRACT

Background: Pegmolesatide, a synthetic peptide-based erythropoietin (EPO) receptor agonist, is being evaluated as an alternative to epoetin alfa for treating anemia of chronic kidney disease (CKD) in Chinese dialysis patients. There is a critical need for a long-acting, cost-effective erythropoiesis-stimulating agent that does not produce EPO antibodies. Methods: A randomized, open-label, active-comparator, non-inferiority phase three trial was conducted at 43 dialysis centers in China between May 17th, 2019, and March 28th, 2022. Eligible patients aged 18-70 years were randomly assigned (2:1) to receive pegmolesatide once every four weeks or epoetin alfa one to three times per week, with doses adjusted to maintain a hemoglobin level between 10.0 and 12.0 g/dL. The primary efficacy endpoint was the mean change in hemoglobin level from baseline to the efficacy evaluation period in the per-protocol set (PPS) population. Non-inferiority of pegmolesatide to epoetin alfa was established if the lower limit of the two-sided 95% confidence interval for the between-group difference was ≥ -1.0 g/dL. Safety assessment included adverse events and potential anaphylaxis reactions. This trial is registered at ClinicalTrials.gov, NCT03902691. Findings: Three hundreds and seventy-two patients were randomly assigned to the pegmolesatide group (248 patients) or the epoetin alfa group (124 patients). A total of 347 patients (233 in the pegmolesatide group and 114 in the epoetin alfa group) were included in the PPS population. In the PPS, the mean change (standard deviation, SD) in hemoglobin level from baseline to the efficacy evaluation period was 0.07 (0.92) g/dL in the pegmolesatide group and -0.22 (0.97) g/dL in the epoetin alfa group. The between-group difference was 0.29 g/dL (95% confidence interval: 0.11-0.47), verifying non-inferiority of pegmolesatide to epoetin alfa. Adverse events occurred in 231 (94%) participants in the pegmolesatide group and in 110 (89%) in the epoetin alfa group. Hypertension was the most common treatment-related adverse event. No fatal cases of anaphylaxis or hypotension were reported. Interpretation: Monthly subcutaneously injection of pegmolesatide was as effective and safe as conventional epoetin alfa administrated one to three times a week in treating anemia in Chinese dialysis patients. Funding: The study was supported by Hansoh Medical Development Group.

10.
J Biol Chem ; 299(12): 105395, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890777

ABSTRACT

Sterile 20-like kinases Mst1 and Mst2 (Mst1/2) and large tumor suppressor 1/2 are core kinases to mediate Hippo signaling in maintaining tissue homeostasis. We have previously demonstrated that Smad ubiquitin (Ub) regulatory factor 1 (Smurf1), a HECT-type E3 ligase, ubiquitinates and in turn destabilizes large tumor suppressor 1/2 to induce the transcriptional output of Hippo signaling. Here, we unexpectedly find that Smurf1 interacts with and polyubiquitinates Mst1/2 by virtue of K27- and K29-linked Ub chains, resulting in the proteasomal degradation of Mst1/2 and attenuation of their tumor-suppressor functions. Among the potential Ub acceptor sites on Mst1/2, K285/K282 are conserved and essential for Smurf1-induced polyubiquitination and degradation of Mst1/2 as well as transcriptional output of Hippo signaling. As a result, K285R/K282R mutation of Mst1/2 not only negates the transcriptional output of Hippo signaling but enhances the tumor-suppressor functions of Mst1/2. Together, we demonstrate that Smurf1-mediated polyubiquitination on K285/K282 of Mst1/2 destabilizes Mst1/2 to attenuate their tumor-suppressor functions. Thus, the present study identifies Smurf1-mediated ubiquitination of Mst1/2 as a hitherto uncharacterized mechanism fine-tuning the Hippo signaling pathway and may provide additional targets for therapeutic intervention of diseases associated with this important pathway.


Subject(s)
Genes, Tumor Suppressor , Ubiquitin-Protein Ligases , Hippo Signaling Pathway , Ligases/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Humans , Animals , Mice
11.
BMC Pulm Med ; 23(1): 353, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726724

ABSTRACT

BACKGROUND: Minimising postoperative pulmonary complications (PPCs) after thoracic surgery is of utmost importance. A major factor contributing to PPCs is the driving pressure, which is determined by the ratio of tidal volume to lung compliance. Inhalation and intravenous administration of penehyclidine can improve lung compliance during intraoperative mechanical ventilation. Therefore, our study aimed to compare the efficacy of inhaled vs. intravenous penehyclidine during one-lung ventilation (OLV) in mitigating driving pressure and mechanical power among patients undergoing thoracic surgery. METHODS: A double-blind, prospective, randomised study involving 176 patients scheduled for elective thoracic surgery was conducted. These patients were randomly divided into two groups, namely the penehyclidine inhalation group and the intravenous group before their surgery. Driving pressure was assessed at T1 (5 min after OLV), T2 (15 min after OLV), T3 (30 min after OLV), and T4 (45 min after OLV) in both groups. The primary outcome of this study was the composite measure of driving pressure during OLV. The area under the curve (AUC) of driving pressure from T1 to T4 was computed. Additionally, the secondary outcomes included mechanical power, lung compliance and the incidence of PPCs. RESULTS: All 167 participants, 83 from the intravenous group and 84 from the inhalation group, completed the trial. The AUC of driving pressure for the intravenous group was 39.50 ± 9.42, while the inhalation group showed a value of 41.50 ± 8.03 (P = 0.138). The incidence of PPCs within 7 days after surgery was 27.7% in the intravenous group and 23.8% in the inhalation group (P = 0.564). No significant differences were observed in any of the other secondary outcomes between the two groups (all P > 0.05). CONCLUSIONS: Our study found that among patients undergoing thoracoscopic surgery, no significant differences were observed in the driving pressure and mechanical power during OLV between those who received an intravenous injection of penehyclidine and those who inhaled it. Moreover, no significant difference was observed in the incidence of PPCs between the two groups.


Subject(s)
One-Lung Ventilation , Humans , Prospective Studies , Respiratory Mechanics , Administration, Intravenous , Postoperative Complications , Thoracoscopy
12.
Clin Interv Aging ; 18: 1565-1576, 2023.
Article in English | MEDLINE | ID: mdl-37727450

ABSTRACT

Purpose: Dexmedetomidine exerts a neuroprotective effect, however, the mechanism underlying this effect remains unclear. This study aimed to explore whether dexmedetomidine can reduce the increase in neurofilament light chain (NfL) protein concentration to play a neuroprotective role during thoracoscopic surgery. Patients and Methods: Patients aged ≥60 years undergoing general anesthesia for thoracoscopic surgery were randomly assigned to receive dexmedetomidine (group D) or not receive dexmedetomidine (group C). Patients in group D received a loading dose of dexmedetomidine 0.5 µg/kg before anesthesia induction and a continuous infusion at 0.5 µg·kg-1·h-1 until the end of the surgery. Dexmedetomidine was not administered in group C. The primary outcome was the NfL concentration on postoperative day 1. The concentrations of procalcitonin (PCT), serum amyloid A (SAA), and high-sensitivity C-reactive protein (hs-CRP) were detected preoperatively and on postoperative day 1. In addition, the numerical rating scale (NRS) and quality of recovery-40 (QoR-40) scores were evaluated. Results: A total of 38 patients in group D and 37 in group C were included in the analysis. No differences were observed between the groups in terms of the plasma concentration of NfL preoperatively and on postoperative day 1 (11.17 [8.86, 13.93] vs 13.15 [10.76, 15.56] pg/mL, P > 0.05; 16.70 [12.23, 21.15] vs 19.48 [15.25, 22.85] pg/mL, P > 0.05, respectively). However, the postoperative plasma NfL concentration was significantly higher than the preoperative value in both groups (both P < 0.001). The groups exhibited no differences in PCT, SAA, hs-CRP, NRS, and QoR-40 (all P > 0.05). Conclusion: Intraoperative administration of dexmedetomidine at a conventional dose does not appear to significantly reduce the increase in postoperative plasma NfL concentration in elderly patients undergoing thoracoscopic surgery. This finding suggests that the neuroprotective effect of dexmedetomidine at a conventional dose was not obvious during general anesthesia.


Subject(s)
C-Reactive Protein , Neuroprotective Agents , Aged , Humans , Intermediate Filaments , Prospective Studies , Anesthesia, General
13.
Ren Fail ; 45(2): 2254569, 2023.
Article in English | MEDLINE | ID: mdl-37755153

ABSTRACT

Coronary artery calcification (CAC) is common in dialysis patients and is associated with a higher risk of future cardiovascular events. Sodium thiosulfate (STS) is effective for calciphylaxis in dialysis patients; however, the influence of STS on CAC in dialysis patients remains unclear. This systematic review and meta-analysis were conducted to evaluate the effects of STS on CAC in patients undergoing dialysis. PubMed, Embase, Cochrane Library, CNKI, and Wanfang databases were searched from inception to 22 March 2023 for controlled studies comparing the influence of STS versus usual care without STS on CAC scores in dialysis patients. A random effects model incorporating the potential influence of heterogeneity was used to pool the results. Nine studies, including two non-randomized studies and seven randomized controlled trials, were included in the meta-analysis. Among these, 365 patients on dialysis were included in the study. Compared with usual care without STS, intravenous STS for 3-6 months was associated with significantly reduced CAC scores (mean difference [MD] = -180.17, 95% confidence interval [CI]: -276.64 to -83.70, p < 0.001, I2 = 0%). Sensitivity analysis limited to studies of patients on hemodialysis showed similar results (MD: -167.33, 95% CI: -266.57 to -68.09, p = 0.001; I2 = 0%). Subgroup analyses according to study design, sample size, mean age, sex, dialysis vintage of the patients, and treatment duration of STS also showed consistent results (p for subgroup differences all > 0.05). In conclusion, intravenous STS may be effective in attenuating CAC in dialysis patients.


Subject(s)
Coronary Artery Disease , Thiosulfates , Vascular Calcification , Humans , Renal Dialysis , Thiosulfates/therapeutic use , Vascular Calcification/prevention & control
15.
Genes Dis ; 10(5): 2013-2028, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37492706

ABSTRACT

Alternative splicing (AS) produces the different mRNA splicing bodies, which are then translated into multiple protein isoforms and participate in various biological functions. With a deeper understanding of alternative splicing through the study of transcriptomes using high-throughput sequencing-based methods, the correlation between aberrant AS and diseases triggered a great concern, especially abnormal AS and cancer. Medulloblastoma (MB) is an intracranial tumor in children. Sonic hedgehog MB (SHH-MB) accounted for approximately 30% of MB, which is associated with the activation of SHH signaling. Growing evidence shows that aberrant AS is closely related to the tumorigenesis of MB. Here, we briefly introduced the AS and its mechanism. Next, we described canonical/noncanonical hedgehog signaling and its correlation with MB. The main description focused on AS of various regulators in canonical hedgehog signaling in MB. In addition, we also described AS of various regulators in noncanonical hedgehog signaling. Meanwhile, activated hedgehog signaling also induces AS in MB. Then, we pointed out that aberrant AS of hedgehog signaling is associated with different MB subgroups. Finally, we summarized the therapeutic applications of targeted AS in cancer treatment. In summary, further understanding of AS in SHH-MB could develop therapeutic targets for splicing factors which may be a novel therapeutic strategy.

17.
Nat Commun ; 14(1): 3887, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37393345

ABSTRACT

Allergic asthma is characterized by goblet cell metaplasia and subsequent mucus hypersecretion that contribute to the morbidity and mortality of this disease. Here, we explore the potential role and underlying mechanism of protein SUMOylation-mediated goblet cell metaplasia. The components of SUMOylaion machinery are specifically expressed in healthy human bronchial epithelia and robustly upregulated in bronchial epithelia of patients or mouse models with allergic asthma. Intratracheal suppression of SUMOylation by 2-D08 robustly attenuates not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Phosphoproteomics and biochemical analyses reveal SUMOylation on K1007 activates ROCK2, a master regulator of goblet cell metaplasia, by facilitating its binding to and activation by RhoA, and an E3 ligase PIAS1 is responsible for SUMOylation on K1007. As a result, knockdown of PIAS1 in bronchial epithelia inactivates ROCK2 to attenuate IL-13-induced goblet cell metaplasia, and bronchial epithelial knock-in of ROCK2(K1007R) consistently inactivates ROCK2 to alleviate not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Together, SUMOylation-mediated ROCK2 activation is an integral component of Rho/ROCK signaling in regulating the pathological conditions of asthma and thus SUMOylation is an additional target for the therapeutic intervention of this disease.


Subject(s)
Asthma , Goblet Cells , rho-Associated Kinases , Animals , Humans , Mice , Allergens , Inflammation , Interleukin-13 , Metaplasia , Sumoylation , rho-Associated Kinases/chemistry
18.
Ther Apher Dial ; 27(5): 937-948, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37115023

ABSTRACT

OBJECTIVE: Evaluate the impact of peritoneal dialysis catheter (PDC) tail-end design variations on PDC-related complications. METHOD: Effective data were extracted from databases. The literature was evaluated according to the Cochrane Handbook for Systematic Reviews of Interventions, and a meta-analysis was conducted. RESULTS: Analysis revealed that the straight-tailed catheter was superior to the curled-tailed catheter in minimizing catheter displacement and complication-induced catheter removal (RR = 1.73, 95%CI:1.18-2.53, p = 0.005). In terms of complication-induced PDC removal, the straight-tailed catheter was superior to the curled-tailed catheter (RR = 1.55, 95%CI: 1.15-2.08, p = 0.004). CONCLUSION: Curled-tail design of the catheter increased the risk of catheter displacement and complication-induced catheter removal, whereas the straight-tailed catheter was superior to the curled-tailed catheter in terms of reducing catheter displacement and complication-induced catheter removal. However, the analysis and comparison of factors such as leakage, peritonitis, exit-site infection, and tunnel infection did not reveal a statistically significant difference between the two designs.


Subject(s)
Catheters, Indwelling , Peritoneal Dialysis , Humans , Catheters, Indwelling/adverse effects , Systematic Reviews as Topic , Catheterization/adverse effects , Peritoneal Dialysis/adverse effects , Postoperative Complications
19.
Ageing Res Rev ; 87: 101920, 2023 06.
Article in English | MEDLINE | ID: mdl-37004843

ABSTRACT

Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic coupling structures between mitochondria and the endoplasmic reticulum (ER). As a new subcellular structure, MAMs combine the two critical organelle functions. Mitochondria and the ER could regulate each other via MAMs. MAMs are involved in calcium (Ca2+) homeostasis, autophagy, ER stress, lipid metabolism, etc. Researchers have found that MAMs are closely related to metabolic syndrome and neurodegenerative diseases (NDs). The formation of MAMs and their functions depend on specific proteins. Numerous protein enrichments, such as the IP3R-Grp75-VDAC complex, constitute MAMs. The changes in these proteins govern the interaction between mitochondria and the ER; they also affect the biological functions of MAMs. S-palmitoylation is a reversible protein post-translational modification (PTM) that mainly occurs on protein cysteine residues. More and more studies have shown that the S-palmitoylation of proteins is closely related to their membrane localization. Here, we first briefly describe the composition and function of MAMs, reviewing the component and biological roles of MAMs mediated by S-palmitoylation, elaborating on S-palmitoylated proteins in Ca2+ flux, lipid rafts, and so on. We try to provide new insight into the molecular basis of MAMs-related diseases, mainly NDs. Finally, we propose potential drug compounds targeting S-palmitoylation.


Subject(s)
Mitochondrial Membranes , Neurodegenerative Diseases , Humans , Mitochondrial Membranes/metabolism , Protein S/metabolism , Lipoylation , Neurodegenerative Diseases/metabolism , Mitochondria/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum Stress/physiology
20.
Aging (Albany NY) ; 15(7): 2582-2609, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37014322

ABSTRACT

BACKGROUND: Allograft Inflammatory Factor 1 (AIF-1) is a member of the allograft inflammatory factor gene family and plays an essential role in the occurrence and development of malignant tumors. However, little is known about the expression pattern, predictive value, and biological function of AIF-1 across cancers. MATERIALS AND METHODS: We first analyzed AIF-1 expression across cancers based on data from public databases. Univariate Cox regression and Kaplan-Meier analyses were used to explore the predictive value of AIF-1 expression in various cancers. Moreover, gene set enrichment analysis (GSEA) was applied to determine the cancer hallmarks associated with AIF-1 expression. Spearman correlation analysis was performed to investigate the association between AIF-1 expression and tumor microenvironment scores, immune cell infiltration, immune-related genes, TMB, MSI, and DNA methyltransferases. RESULTS: AIF-1 expression was upregulated in most cancer types and exhibited prognosis-predictive ability. AIF-1 expression was positively correlated with immune infiltrating cells and immune checkpoint-related genes in most cancers. Additionally, the promoter methylation level of AIF-1 was different in distinct tumors. High methylation levels of AIF-1 were associated with a worse prognosis in UCEC and melanoma, whereas they were associated with a better prognosis in GBM, KIRC, OV, and UVM. Finally, we found that AIF-1 was significantly highly expressed in KIRC tissues. Functionally, silencing AIF-1 dramatically decreased proliferation, migration, and invasion abilities. CONCLUSION: Our results reveal that AIF-1 acts as a robust tumor biomarker and is closely correlated with tumor immune infiltration. Furthermore, AIF-1 may function as an oncogene and promote tumor progression in KIRC.


Subject(s)
Melanoma , Humans , Biomarkers, Tumor/genetics , DNA Methylation , Prognosis , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...