Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Sci Total Environ ; 951: 175285, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39102960

ABSTRACT

Substantial uncertainties pose challenges to the accuracy of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) quantification in wastewater. We conducted a comprehensive evaluation of two concentration methods, three nucleic acid extraction methods, and the amplification performance of eight primer-probe sets. Our results showed that the two concentration methods exhibited similar recovery rates. Specifically, using a 30 kDa cut-off ultrafilter and a centrifugal force of 2500 g achieved the highest virus recovery rates (27.32 ± 8.06 % and 26.37 ± 7.77 %, respectively), with lower corresponding quantification uncertainties of 29.51 % and 29.47 % in ultrafiltration methods. Similarly, a 15 % PEG concentration with 1.5 M NaCl markedly improved virus recovery (26.76 ± 5.92 % and 28.47 ± 6.74 %, respectively), and reducing variation to 22.16 % and 23.66 % in the PEG precipitation method. Additionally, employing a vigorous bead-beating approach at 6 m/s during viral RNA extraction significantly increased RNA yield, with an efficiency reaching up to 82.18 %. Among the evaluated eight primer-probe sets, the E_Sarbeco primer-probe set provided the most stable and consistent quantitative results across various sample matrices. These findings are crucial for establishing robust viral quantification protocols and enhancing methodological precision for effective wastewater surveillance, enabling sensitive and precise detection of SARS-CoV-2.

2.
Lung Cancer ; 195: 107902, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39126888

ABSTRACT

OBJECTIVE: The 5-year survival rate of early-stage non-small cell lung cancer (NSCLC) is still not optimistic. We aimed to construct prognostic tools using clinicopathological (CP) and serum 8-miRNA panel to predict the risk of overall survival (OS) in early-stage NSCLC. MATERIALS AND METHODS: A total of 799 patients with early-stage NSCLC, treated between April 2008 and September 2019, were included in this study. A sub-group of patients with serum samples, 280, were analyzed for miRNA profiling. The primary endpoint of the study was OS. The CP panel for prognosis was developed using multivariate and forward stepwise selection analyses. The serum 8-miRNA panel was developed using the miRNAs that were significant for prognosis, screened using real-time quantitative PCR (qPCR) followed by differential, univariate and Cox regression analyses. The combined model was developed using CP panel and serum 8-miRNA panel. The predictive performance of the panels and the combined model was evaluated using the area under curve (AUC) values of receiver operating characteristics (ROC) curves and Kaplan-Meier survival analysis. RESULT: The prognostic panels and the combined model (comprising CP panel and serum 8-miRNA panel) was used to classify the patients into high-risk and low-risk groups. The OS rates of these two groups were significantly different (P<0.05). The two panels had higher AUC than the two guidelines, and the combined model had the highest AUC. The AUC of the combined model (AUC=0.788; 95 %CI 0.706-0.871) was better than that of the National Comprehensive Cancer Network (NCCN) guideline (AUC=0.601; 95 %CI 0.505-0.697) and Chinese Society of Clinical Oncology (CSCO) guideline (AUC=0.614; 95 %CI 0.520-0.708). CONCLUSION: The combined model based on CP panel and serum 8-miRNA panel allows better prognostic risk stratification of patients with early-stage NSCLC to predict risk of OS.

3.
Eur J Med Res ; 29(1): 400, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090755

ABSTRACT

Preterm delivery (PTD) is associated with severe adverse maternal and neonatal outcomes and higher medical costs. Therefore, PTD warrants more attention. However, predicting PTD remains a challenge for researchers. This study aimed to investigate potential prenatal predictors of PTD. We retrospectively recruited pregnant women who experienced either PTD or term delivery (TD) and underwent laboratory examinations at 32 weeks of gestation. We compared the test results between the two groups and performed logistic regression analysis and receiver operating characteristic (ROC) curve analysis to identify risk factors and predictive factors for PTD. Our investigation revealed that the PTD cohort exhibited statistically significant elevations in lymphocyte count, mean corpuscular hemoglobin concentration, calcium, uric acid, alkaline phosphatase, triglycerides, and total bile acids. Conversely, the PTD group demonstrated statistically significant reductions in mean corpuscular volume, homocysteine, neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR), neutrophils to (white blood cells-neutrophils) ratio (dNLR), and (neutrophils × monocytes) to lymphocyte ratio (SIRI). The ROC curve analysis revealed that calcium had an area under the curve (AUC) of 0.705, with a cut-off value of 2.215. Logistic regression analysis showed that premature rupture of membranes was an independent risk factor for PTD. Our study demonstrated that serum calcium levels, NLR, dNLR, and other laboratory tests conducted at 32 weeks of gestation can serve as predictors for PTD. Furthermore, we identified premature rupture of membranes as a risk factor for PTD.


Subject(s)
Calcium , Premature Birth , Humans , Female , Pregnancy , Retrospective Studies , Calcium/blood , Adult , Premature Birth/blood , Gestational Age , Risk Factors , ROC Curve , Biomarkers/blood
4.
Clinics (Sao Paulo) ; 79: 100458, 2024.
Article in English | MEDLINE | ID: mdl-39084065

ABSTRACT

BACKGROUND: The influences of Oxycodone (OXY) combined with Paclitaxel (PTX) on breast cancer cells are unclear. The present study aimed to examine the effects of OXY combined with PTX on the proliferation, apoptosis, and migration of human breast cancer SKBR3 cells and the underlying mechanism. METHODS: The proliferation, apoptosis and invasion of SKBR3 cells were assessed by CCK-8, colony formation assay, flowcytometric, Transwell assay and scratch assays, respectively. In addition, Western blotting was used to detect the expression of related proteins in these cells. The autophagic bodies were observed under a transmission electron microscope. RESULTS: OXY (0.25, 0.5 and 1 mM) significantly inhibited the viability, colony-forming, migration, and invasion of SKBR3 cells as compared to the control group. Furthermore, OXY (0.25, 0.5 and 1 mM) markedly induced the apoptosis of SKBR3 cells and the levels of apoptosis-related proteins. In addition, OXY (0.25, 0.5 and 1 mM) and PTX inhibited the proliferation of SKBR3 cells synergistically as compared to PTX group in vitro. Moreover, OXY (0.25, 0.5 and 1 mM) significantly elevated the PTX-induced apoptosis in SKBR3 cells via downregulating the expression of N-cadherin, Becline-1 LC3-Ⅱ, p-Akt and p-mTOR and upregulating E-cadherin expression. Compared with the control group, OXY (1 mM) treatment induced autophagy in SKBR3 cells. CONCLUSIONS: The present study indicates that OXY can enhance the antitumor effect of PTX on breast cancer in vitro. Hence, the combination of OXY with PTX may serve as a potential strategy for the treatment of breast cancer.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Movement , Cell Proliferation , Oxycodone , Paclitaxel , Humans , Paclitaxel/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Apoptosis/drug effects , Cell Proliferation/drug effects , Female , Cell Line, Tumor , Oxycodone/pharmacology , Cell Movement/drug effects , Drug Synergism , Cell Survival/drug effects , Autophagy/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Reproducibility of Results , Blotting, Western
5.
Biochem Genet ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046651

ABSTRACT

5-Hydroxytryptamine receptors (5-HTRs) are strongly correlated with tumor progression in various types of cancer. Despite this, the underlying mechanisms responsible for the role of 5-HTRs in non-small cell lung cancer (NSCLC) remains unclear. This study aimed to investigate the relationship between 5-hydroxytryptamine receptor 3A (HTR3A) and NSCLC development. Our findings indicated a higher distribution of HTR3A expression in NSCLC tissues when compared with normal tissues, where patients with high HTR3A levels demonstrated shorter overall survival times. In vitro analyses revealed that overexpression of HTR3A facilitated the proliferation and migration of NSCLC cell lines (A549 and NCI-H3255). Similarly, a notable acceleration of tumor growth and enhanced pulmonary tumorigenic potential were observed in HTR3A-overexpressing tumor-bearing mice. Mechanistically, upregulation of Forkhead Box H1 (FOXH1) by HTR3A led to the activation of Wnt3A/ß-catenin signaling pathways, thereby promoting the development of NSCLC. Our report thus highlights the significance of the HTR3A/FOXH1 axis during tumor progression in NSCLC, proposing HTR3A as a possible diagnostic indicator and candidate target for clinical therapy.

6.
Adv Sci (Weinh) ; : e2403378, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072928

ABSTRACT

Ultra-thin 2D materials have great potential as electrodes for micro-supercapacitors (MSCs) because of their facile ion transport channels. Here, a high-precision controllable photonic-synthesis strategy that provided 1 inch wafer-scale ultra-thin film arrays of alloyed WxMo2xSy with sulfur vacancies and expanded interlayer (13.2 Å, twice of 2H MoS2) is reported. This strategy regulates the nucleation and growth of transition metal dichalcogenides (TMDs) on the picosecond or even femtosecond scale, which induces Mo-W alloying, interlayer expansion, and sulfur loss. Therefore, the diffusion barrier of WxMo2xSy is reduced, with charge transfer and ion diffusion enhancing. The as-prepared symmetric MSCs with the size of 100 × 100 µm2 achieve ultrahigh specific capacitance (242.57 mF cm-2 and 242567.83 F cm-3), and energy density (21.56 Wh cm-3 with power density of 485.13 W cm3). The established synthesis strategy fits numerous materials, which provides a universal method for the flexible synthesis of electrodes in microenergy devices.

7.
Syst Rev ; 13(1): 202, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080805

ABSTRACT

BACKGROUND: External cephalic version (ECV) is a medical procedure in which an extracorporeal manipulation is performed to render the breech presentation (BP) fetus in the cephalic position. The use of anesthesia to facilitate repositioning has been evaluated in various randomized clinical trials (RCTs), but its potential effectiveness remains controversial. METHODS: A systematic literature search was carried out in 8 electronic databases. In the meta-analysis, a random effects model was used to calculate the pooled relative risk (RR) and its 95% confidence interval (CI), and the pooled standardized mean difference (SMD) and its 95% CI, in order to systematically assess the effect of anesthesia on the success rates of ECV, vaginal delivery, cesarean delivery as well as other outcomes. Relevant subgroup analyses, publication bias test and sensitivity analyses were also conducted. RESULTS: This review included 17 RCTs. Women who received anesthesia had a significantly higher incidence of successful ECV (RR: 1.37, 95% CIs: 1.19-1.58) and vaginal delivery (RR: 1.23, 95% CIs: 1.03-1.47), and a significantly lower incidence of cesarean delivery (RR: 0.69, 95% CIs: 0.53-0.91), compared with those who did not. CONCLUSION: The administration of anesthesia not only significantly reduces maternal pain but also significantly increases the success rate of ECV in women with malpresentation at term, leading to a significant rise in the incidence of vaginal delivery. However, it may increase the incidence of maternal hypotension. SYSTEMATIC REVIEW REGISTRATION: The protocol was prospectively registered with PROSPERO, registration CRD42022381552.


Subject(s)
Breech Presentation , Cesarean Section , Version, Fetal , Female , Humans , Pregnancy , Anesthesia, Obstetrical/methods , Breech Presentation/therapy , Delivery, Obstetric/methods , Randomized Controlled Trials as Topic , Version, Fetal/methods
8.
J Biophotonics ; : e202400192, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938144

ABSTRACT

Non-invasive screening for bladder cancer is crucial for treatment and postoperative follow-up. This study combines digital microfluidics (DMF) technology with fluorescence lifetime imaging microscopy (FLIM) for urine analysis and introduces a novel non-invasive bladder cancer screening technique. Initially, the DMF was utilized to perform preliminary screening and enrichment of urine exfoliated cells from 54 participants, followed by cell staining and FLIM analysis to assess the viscosity of the intracellular microenvironment. Subsequently, a deep learning residual convolutional neural network was employed to automatically classify FLIM images, achieving a three-class prediction of high-risk (malignant), low-risk (benign), and minimal risk (normal) categories. The results demonstrated a high consistency with pathological diagnosis, with an accuracy of 91% and a precision of 93%. Notably, the method is sensitive for both high-grade and low-grade bladder cancer cases. This highly accurate non-invasive screening method presents a promising approach for bladder cancer screening with significant clinical application potential.

9.
Med Sci Monit ; 30: e943946, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38887008

ABSTRACT

BACKGROUND The objective of this investigation was to assess the effectiveness of using T-shaped steel plates through the anterior lateral approach and Gerdy's tubercle osteotomy for treating posterior lateral tibial plateau fractures. MATERIAL AND METHODS A retrospective analysis was conducted on clinical data from 20 patients, aged on average 53.9±10.36 years, who were admitted for tibial plateau fractures involving the posterior lateral condyle between January 2019 and October 2022. The fixation and reduction of the posterior lateral bone block were performed using the anterior lateral approach combined with Gerdy's tubercle osteotomy to address the posterior lateral tibial plateau fracture. Post-surgery assessment was conducted using the Hospital for Special Surgery (HSS) knee combined score. RESULTS During the 12-24 (14.2±1.7) month postoperative period, we conducted 20 surgeries. Within 9 to 12 weeks, fracture healing transpired without any complications such as incision infection, nerve injury, or fracture displacement being detected. Assessment of knee joint function at the final follow-up was conducted using the HSS knee combined score, with results indicating 16 cases rated as excellent, 3 cases as good, and 1 case as fair. CONCLUSIONS In tibial plateau fractures impacting the posterior lateral condyle, the anterior lateral approach, combined with Gerdy's tubercle osteotomy, allows for direct exposure and manipulation of the posterior lateral bone block fracture. Using a T-shaped support plate and a lateral locking plate provides a reliable method for fracture fixation, aiding in convenient surgical positioning and intraoperative fluoroscopy. The treatment approach effectively manages fractures located on the posterior lateral aspect of the tibial plateau.


Subject(s)
Fracture Fixation, Internal , Osteotomy , Tibial Plateau Fractures , Adult , Aged , Female , Humans , Male , Middle Aged , Bone Plates , Fracture Fixation, Internal/methods , Fracture Healing , Knee Joint/surgery , Osteotomy/methods , Retrospective Studies , Tibial Plateau Fractures/surgery , Treatment Outcome
10.
Eur Urol Oncol ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693018

ABSTRACT

BACKGROUND AND OBJECTIVE: Cryoablation is a traditional antitumor therapy with good prospects for development. The efficacy of endoscopic management as a kidney-sparing surgery for high-risk upper tract urothelial carcinoma (UTUC) remains controversial. Our aim was to evaluate the impact of endoscopic cryoablation (ECA) versus radical nephroureterectomy (RNU) on survival outcomes, renal function, and complications. METHODS: We retrospectively analyzed data for 116 patients with newly diagnosed high-risk UTUC who underwent either ECA (n = 13) or RNU (n = 103) from March 25, 2019 to December 8, 2021. Propensity score matching (1:4) using the nearest neighbor method was performed before analysis. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), intravesical recurrence-free survival (RFS), the change in renal function, and treatment-emergent adverse events (TEAEs). KEY FINDINGS AND LIMITATIONS: At median follow-up of 28.2 mo for the ECA group and 27.6 mo for the RNU group, 2-yr OS (82% vs 84%), PFS (73% vs 71%), and intravesical RFS (81% vs 83%) rates after matching did not significantly differ. A decline in renal function was observed after RNU, but not after ECA. Five (41.7%) patients in the ECA group reported six TEAEs, and 17 patients (35.4%) in the RNU group reported 20 TEAEs. CONCLUSIONS AND CLINICAL IMPLICATIONS: In comparison to RNU, ECA for UTUC resulted in noninferior oncological outcomes and superior preservation of renal function. PATIENT SUMMARY: Our study suggests that a treatment called endoscopic cryoablation for high-risk cancer in the upper urinary tract can help in preserving kidney function, with similar survival outcomes to those after more extensive surgery. This option can be considered for selected patients with a strong preference for kidney preservation.

12.
Water Res ; 257: 121685, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728774

ABSTRACT

Water disinfection is undoubtedly regarded as a critical step in ensuring the water safety for human consumption, and ozone is widely used as a highly effective disinfectant for the control of pathogenic microorganisms in water. Although the diminished ozone efficiencies in complex water matrices have been widely reported, the specific extent to which individual components of matrix act on the virus inactivation by ozone remains unclear, and effective methodologies to predict the comprehensive effects of various factors are needed. In this study, the decoupled impact of the intricate water matrix on the ozone inactivation of viruses was systematically investigated and assessed from a simulative perspective. The concept of "equivalent ozone depletion rate constant" (k') was introduced to quantify the influence of different species, and a kinetic model was developed based on the k' values for simulating the ozone inactivation processes in complex matrix. The mechanisms through which diverse species influenced the ozone inactivation effectiveness were identified: 1) competition effects (k' = 105∼107 M-1s-1), including organic matters and reductive ions (SO32-, NO2-, and I-), which were the most influential species inhibiting the virus inactivation; 2) shielding effects (k' = 103∼104 M-1s-1), including Ca2+, Mg2+, and kaolin; 3) insignificant effects (k' = 0∼1 M-1s-1), including Cl-, SO42-, NO3-, NH4+, and Br-; 4) promotion effects (k' = ∼-103 M-1s-1), including CO32- and HCO3-. Prediction of ozone disinfection efficiency and evaluation of species contribution under complex aquatic matrices were successfully realized utilizing the model. The systematic understanding and methodologies developed in this research provide a reliable framework for predicting ozone inactivation efficiency under complex matrix, and a potential tool for accurate disinfectant dosage determination and interfering factors control in actual wastewater treatment processes.


Subject(s)
Disinfection , Ozone , Virus Inactivation , Wastewater , Ozone/pharmacology , Wastewater/virology , Virus Inactivation/drug effects , Disinfection/methods , Water Purification , Disinfectants/pharmacology , Models, Theoretical , Kinetics
13.
Neural Netw ; 176: 106365, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38739964

ABSTRACT

Recognizing the evolution pattern of traffic condition and making accurate prediction play a vital role in intelligent transportation systems (ITS). With the massive increase of available traffic data, deep learning-based models have attracted considerable attention for their impressive performance in traffic forecasting. However, the majority of existing approaches neglect to model of asynchronously dynamic spatio-temporal correlation and fail to consider the impact of historical traffic data on future condition. Additionally, the attribute of deep learning method presents challenges in interpreting the explicit spatiotemporal relationships. In order to enhance the accuracy of traffic prediction as well as extract comprehensive and explainable spatial-temporal relevance in traffic networks, we propose a novel attention-based local spatial and temporal relation discovery (ALSTRD) model. Our model firstly implements feature representation learning to effectively express latent input traffic information. Then, a local attention mechanism structure is established to model asynchronous dependencies of historical input data. Finally, another attention network and the Pearson Correlation Coefficient method are introduced to extract the elaborate influence of the historical traffic condition of neighboring roads on the future condition of the target road. The experiment results on several datasets demonstrate that our model achieves significant improvements in prediction accuracy compared to other baseline methods, which can be attributed to its ability to extract the fine-grained correlation among historical traffic data and capture the dynamic association between past and future data. In addition, the incorporation of attention mechanism and Pearson Correlation Coefficient promotes the model's ability to elucidate spatiotemporal correlations among traffic data, thereby providing a more robust explanation.


Subject(s)
Attention , Deep Learning , Forecasting , Neural Networks, Computer , Attention/physiology , Transportation/methods , Humans , Spatio-Temporal Analysis
14.
Chemosphere ; 359: 142262, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714252

ABSTRACT

Industrialization has caused a significant global issue with cadmium (Cd) pollution. In this study, Biochar (Bc), generated through initial pyrolysis of rice straw, underwent thorough mixing with magnetized bentonite clay, followed by activation with KOH and subsequent pyrolysis. Consequently, a magnetized bentonite modified rice straw biochar (Fe3O4@B-Bc) was successfully synthesized for effective treatment and remediation of this problem. Fe3O4@B-Bc not only overcomes the challenges associated with the difficult separation of individual bentonite or biochar from water, but also exhibited a maximum adsorption capacity of Cd(II) up to 241.52 mg g-1. The characterization of Fe3O4@B-Bc revealed that its surface was rich in C, O and Fe functional groups, which enable efficient adsorption. The quantitative calculation of the contribution to the adsorption mechanism indicates that cation exchange and physical adsorption accounted for 65.87% of the total adsorption capacity. In conclusion, Fe3O4@B-Bc can be considered a low-cost and recyclable green adsorbent, with broad potential for treating cadmium-polluted water.


Subject(s)
Bentonite , Cadmium , Charcoal , Oryza , Water Pollutants, Chemical , Cadmium/chemistry , Cadmium/analysis , Oryza/chemistry , Charcoal/chemistry , Adsorption , Bentonite/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods
15.
Environ Sci Technol ; 58(14): 6296-6304, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38556999

ABSTRACT

Anaerobic digestion (AD) is an important biological resource recovery process, where microorganisms play key roles for material transformation. There has been some knowledge about the prokaryotic community and antibiotic resistance genes (ARGs) in AD, but there has been very limited knowledge of phages. In this study, samples from a full-scale AD plant were collected over 13 months, sequenced, and analyzed for viral and prokaryotic metagenomes. Totally, 3015 viral operational taxonomic units (vOTUs) were detected, mostly assigned to Caudoviricetes. The phage community had faster temporal variation than the prokaryotic community. Warm seasons harbored a higher abundance of both temperate phages and broad host-range phages. Seven ARGs of 6 subtypes were carried by 20 vOTUs, a representative ermT gene was synthesized and expressed, and the resistance activity in the host was examined, confirming the real activity of virus-carried ARGs in the AD process. Some of the ARGs were horizontally transferred between the phage and prokaryotic genomes. However, phage infection was not found to contribute to ARG transfer. This study provided an insight into the ecological patterns of the phage community, confirmed the antibiotic resistance activity of virus-carried ARGs, evaluated the contribution of phages on the ARG prevalence, and laid the foundation for the control strategies of the community and antibiotic resistance in the AD process.


Subject(s)
Bacteriophages , Sewage , Bacteriophages/genetics , Anti-Bacterial Agents/pharmacology , Anaerobiosis , Prevalence , Drug Resistance, Microbial/genetics , Genes, Bacterial
16.
Sci Rep ; 14(1): 9272, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38653756

ABSTRACT

The transpedicular procedure has been widely used in spinal surgery. The determination of the best entry point is the key to perform a successful transpedicular procedure. Various techniques have been used to determine this point, but the results are variable. This study was carried out to determine the posterior endpoint of the lumbar pedicle central axis on the standard anterior-posterior (AP) fluoroscopic images. Computer-aided design technology was used to determine the pedicle central axis and the posterior endpoint of the pedicle central axis on the posterior aspect of the vertebra. The standard AP fluoroscopic image of the lumbar vertebral models by three-dimensional printing was achieved. The endpoint projection on the AP fluoroscopic image was determined in reference to the pedicle cortex projection by the measurements of the angle and distance on the established X-Y coordinate system of the radiologic image. The projection of posterior endpoint of the lumbar pedicle central axis were found to be superior to the X-axis of the established X-Y coordinate system and was located on the pedicle cortex projection on the standard AP fluoroscopic image of the vertebra. The projection point was distributed in different sectors in the coordinate system. It was located superior to the X-axis by 18° to 26° at L1, while they were located superior to the X-axis by 12° to 14° at L2 to L5. The projections of posterior endpoints of the lumbar pedicle central axis were located in different positions on the standard AP fluoroscopic image of the vertebra. The determination method of the projection point was helpful for selecting an entry point for a transpedicular procedure with a fluoroscopic technique.


Subject(s)
Lumbar Vertebrae , Pedicle Screws , Lumbar Vertebrae/surgery , Lumbar Vertebrae/diagnostic imaging , Fluoroscopy/methods , Humans , Male , Female , Spinal Fusion/methods , Printing, Three-Dimensional , Computer-Aided Design
18.
Biology (Basel) ; 13(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38534452

ABSTRACT

Circular RNAs (circRNAs) are important regulatory molecules involved in various biological processes. However, the potential function of circRNAs in the turning red process of Quercus mongolica leaves is unclear. This study used RNA-seq data to identify 6228 circRNAs in leaf samples from four different developmental stages and showed that 88 circRNAs were differentially expressed. A correlation analysis was performed between anthocyanins and the circRNAs. A total of 16 circRNAs that may be involved in regulating the colour of Mongolian oak leaves were identified. CircRNAs may affect the colour of Q. mongolica leaves by regulating auxin, cytokinin, gibberellin, ethylene, and abscisic acid. This study revealed the potential role of circRNAs in the colour change of Q. mongolica leaves.

19.
Ecotoxicol Environ Saf ; 273: 116144, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38412630

ABSTRACT

Mesotrione, topramezone, tembotrione, and sulcotrione are four types of 4-hydroxyphenylpyruvate dioxidase (HPPD) inhibitor herbicides that are extensively employed in agricultural practices, but their usage also leads to environmental pollution and poses risks to human health. A probe (E)-1-((2-(pyridin-2-yl) hydrazineylidene) methyl) naphthalen-2-ol (CHMN) based on chelation enhancement (CHEF) effect synthesized. CHMN was first chelated with Zn2+ to form a probe system with green, which can be further used to detect mesotrione, topramezone, tembotrione and sulcotrione in complicated environment. CHMN-Zn2+ detection of four pesticides was accurate, with an excellent linear relationship between 0 and 100 µM. The detection limits were LODmesotrione = 7.79 µM, LODtopramezone = 1.91 µM, LODtembotrione = 1.38 µM and LODsulcotrione = 2.43 µM. The detection time is 1 min, and it is successfully applied in real water sample and bioimaging. This work can provide a novel method for studying the migration and behavior of environmental pollutants.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Cyclohexanones , Herbicides , Mesylates , Sulfones , Humans , Fluorescence , Herbicides/pharmacology , Zinc , Enzyme Inhibitors/pharmacology
20.
Phys Chem Chem Phys ; 26(7): 6196-6207, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305020

ABSTRACT

The plasmonic photothermal conversion efficiency can be enhanced by coupling among plasmonic atoms or plasmonic molecules due to the amplified local electric field and extinction cross-section. Recently, it has been theoretically proved that hybridization between dipolar modes and higher order modes can provide higher enhancement than that among dipolar modes in terms of both near- and far-field, which may lead to a higher photothermal conversion rate. In this work, we systematically investigated the photothermal conversion enhancement of plasmonic coupling between a dipolar mode of a titanium nitride nanoparticle (TiN NP) and a higher order mode of a gold nanorod (Au NR), which was compared to that of coupling among TiN NPs' dipolar modes. We evaluated the photothermal conversion efficiency of dipole-dipole coupling and dipole-multipole coupling in the nanocluster under the illumination of a monochromatic laser of 808 nm wavelength and simulated solar light, respectively. Both experimental tests and numerical simulations suggested that the plasmonic dipole-multipole coupling exhibited higher enhancement in photothermal conversion than dipole-dipole plasmonic coupling.

SELECTION OF CITATIONS
SEARCH DETAIL