Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 463
Filter
1.
J Environ Sci (China) ; 147: 259-267, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003045

ABSTRACT

Arsenic (As) pollution in soils is a pervasive environmental issue. Biochar immobilization offers a promising solution for addressing soil As contamination. The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar. However, the influence of a specific property on As immobilization varies among different studies, and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge. To enhance immobilization efficiency and reduce labor and time costs, a machine learning (ML) model was employed to predict As immobilization efficiency before biochar application. In this study, we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models. The results demonstrated that the random forest (RF) model outperformed gradient boost regression tree and support vector regression models in predictive performance. Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization. These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils. Furthermore, the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization. These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.


Subject(s)
Arsenic , Charcoal , Machine Learning , Soil Pollutants , Soil , Charcoal/chemistry , Arsenic/chemistry , Soil Pollutants/chemistry , Soil Pollutants/analysis , Soil/chemistry , Models, Chemical
2.
Sci Rep ; 14(1): 15346, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961201

ABSTRACT

Rock mass deformation and failure are macroscopic manifestations of crack initiation, propagation, and coalescence. However, simulating the transition of rocks from continuous to discontinuous media under cyclic dynamic loading remains challenging. This study proposes a hybrid finite-discrete element method (HFDEM) to model crack propagation, incorporating a frequency-dependent cohesive-zone model. The mechanical properties of standard sandy mudstone under quasi-static and cyclic dynamic loading were simulated using HFDEM, and the method's reliability was verified through experimental comparison. The comparative analysis demonstrates that HFDEM successfully captures crack interaction mechanisms and accurately simulates the overall failure behavior of specimens. Additionally, the effects of pre-existing flaw inclination angle and dynamic loading frequency on rock failure mechanisms were investigated. The numerical results reveal that rock samples exhibit significantly higher compressive strength under dynamic loading compared to quasi-static loading, with compressive strength increasing with higher cyclic dynamic load frequencies. Furthermore, by analyzing the strength characteristics, crack propagation, and failure modes of the samples, insights into the failure mechanisms of rocks under different frequency loads were obtained. This study provides valuable insights into crack development and failure of rocks under seismic loads, offering guidance for engineering practices.

3.
Genome Biol ; 25(1): 179, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972974

ABSTRACT

Pathogenic allele silencing is a promising treatment for genetic hereditary diseases. Here, we develop an RNA-cleaving tool, TaqTth-hpRNA, consisting of a small, chimeric TaqTth, and a hairpin RNA guiding probe. With a minimal flanking sequence-motif requirement, in vitro and in vivo studies show TaqTth-hpRNA cleaves RNA efficiently and specifically. In an Alzheimer's disease model, we demonstrate silencing of mutant APPswe mRNA without altering the wild-type APP mRNA. Notably, due to the compact size of TaqTth, we are able to combine with APOE2 overexpression in a single AAV vector, which results in stronger inhibition of pathologies.


Subject(s)
Alzheimer Disease , Gene Silencing , RNA, Messenger , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Mice , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , RNA Cleavage , Genetic Vectors , Dependovirus/genetics
4.
High Alt Med Biol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995860

ABSTRACT

Yu Liu, Zhengyang Zhang, Yongting Luo, Peng An, Jingyi Qi, Xu Zhang, Shuaishuai Zhou, Yongzhi Li, Chong Xu, Junjie Luo, and Jiaping Wang. Product of traditional Chinese medicine longgui yangxinwan protects the human body from altitude sickness damage by reducing oxidative stress and preventing mitochondrial dysfunction. High Alt Med Biol. 00:00-00, 2024. Background: Plateau reaction, caused by high-altitude exposure, results in symptoms like headaches, dyspnea, palpitations, fatigue, shortness of breath, and insomnia due to reduced oxygen levels. Mitochondria are crucial for high-altitude acclimatization as they regulate oxygen metabolism and cellular energy, reducing oxidative stress and maintaining bodily functions. Methods: The study participants were randomly divided into placebo group, Rhodiola group and longgui yangxinwan (Original name: taikong yangxinwan) group, with 20 people in each group. Three groups of subjects were sampled at three time points (PI: pre-intervention; P-D1: high-altitude day 1; P-D7: high-altitude day 7), and blood pressure, blood oxygen, heart rate, hemoglobin, and red blood cell count were measured. The ATP content, mitochondrial DNA copy number, expression of mitochondria-related genes, reactive oxygen species (ROS), glutathione peroxidase (GSH-PX) and malondialdehyde (MDA) levels, and mitochondrial morphology were measured in blood at each time point. Results: Our study results demonstrate that longgui yangxinwan keeps the selected human physiological indicators stable and prevents mitochondrial dysfunction in the high altitude. Mechanically, longgui yangxinwan decreases the level of ROS in human serum, whereas increases the activity of the antioxidant enzyme GSH-PX. At high-altitude day 1 (P-D1) and high-altitude day 7 (P-D7), ROS in the placebo group were 1.5 and 2.2-fold higher than those of the longgui yangxinwan group, respectively. In addition, longgui yangxinwan enhances ATP production capacity, restores the levels of mitochondrial respiratory chain complexes, and effectively maintains mitochondrial morphology and integrity. At P-D1 and P-D7, the ATP levels in the longgui yangxinwan group were 19-fold and 26-fold higher than those in the placebo group, respectively. Conclusions: Our study highlights longgui yangxinwan as a potential drug for protecting humans from high-altitude damage by reducing oxidative stress and preventing mitochondrial dysfunction.

6.
Front Oncol ; 14: 1399047, 2024.
Article in English | MEDLINE | ID: mdl-38915366

ABSTRACT

Background: The prognostic value of an effective biomarker, pan-immune-inflammation value (PIV), for head and neck squamous cell carcinoma (HNSCC) patients after radical surgery or chemoradiotherapy has not been well explored. This study aimed to construct and validate nomograms based on PIV to predict survival outcomes of HNSCC patients. Methods: A total of 161 HNSCC patients who underwent radical surgery were enrolled retrospectively for development cohort. The cutoff of PIV was determined using the maximally selected rank statistics method. Multivariable Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were performed to develop two nomograms (Model A and Model B) that predict disease-free survival (DFS). The concordance index, receiver operating characteristic curves, calibration curves, and decision curve analysis were used to evaluate the nomograms. A cohort composed of 50 patients who received radiotherapy or chemoradiotherapy (RT/CRT) alone was applied for generality testing of PIV and nomograms. Results: Patients with higher PIV (≥123.3) experienced a worse DFS (HR, 5.01; 95% CI, 3.25-7.72; p<0.0001) and overall survival (OS) (HR, 5.23; 95% CI, 3.34-8.18; p<0.0001) compared to patients with lower PIV (<123.3) in the development cohort. Predictors of Model A included age, TNM stage, neutrophil-to-lymphocyte ratio (NLR), and PIV, and that of Model B included TNM stage, lymphocyte-to-monocyte ratio (LMR), and PIV. In comparison with TNM stage alone, the two nomograms demonstrated good calibration and discrimination and showed satisfactory clinical utility in internal validation. The generality testing results showed that higher PIV was also associated with worse survival outcomes in the RT/CRT cohort and the possibility that the two nomograms may have a universal applicability for patients with different treatments. Conclusions: The nomograms based on PIV, a simple but useful indicator, can provide prognosis prediction of individual HNSCC patients after radical surgery and may be broadly applicated for patients after RT/CRT alone.

7.
J Colloid Interface Sci ; 673: 26-36, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38870665

ABSTRACT

Sb-based materials are considered as promising anode materials for sodium-ion batteries (SIBs) due to their excellent sodium storage capacities and suitable potentials. However, the Sb-based anodes usually suffer from intense volume expansion and severe pulverization during the alloying-dealloying process, resulting in poor cycling performance. Herein, a composite anode with Sb/Sb2O3 nanoparticles embedded in N-doped porous carbon is prepared by the gas-solid dual template method. The volume change of the anode material is mitigated by the carbon layer enwrapping and the confinement of the porous structure. Nitrogen doping provides abundant sodium storage sites, thus enhancing the storage capacity of sodium ion. Furthermore, to gain the accurate kinetic interpretation of the electrochemical process, an ex-situ transmission electron microscope (TEM) characterization combined with distribution of relaxation times (DRT) is conducted. The Sb/Sb2O3@NPC-1.0 demonstrates excellent electrochemical performance, achieving 340.3 mAh g-1 at 1A g-1, and maintains a capacity of 86.7 % after 1000 cycles. This work paves the way for the practical application of SIBs with high-performance and long-life Sb-based anodes.

8.
Cell Rep Med ; : 101615, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38897205

ABSTRACT

The clinical efficacy of neoadjuvant immunotherapy plus chemotherapy remains elusive in localized epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). Here, we report interim results of a Simon's two-stage design, phase 2 trial using neoadjuvant sintilimab with carboplatin and nab-paclitaxel in resectable EGFR-mutant NSCLC. All 18 patients undergo radical surgery, with one patient experiencing surgery delay. Fourteen patients exhibit confirmed radiological response, with 44% achieving major pathological response (MPR) and no pathological complete response (pCR). Similar genomic alterations are observed before and after treatment without influencing the efficacy of subsequent EGFR-tyrosine kinase inhibitors (TKIs) in vitro. Infiltration and T cell receptor (TCR) clonal expansion of CCR8+ regulatory T (Treg)hi/CXCL13+ exhausted T (Tex)lo cells define a subtype of EGFR-mutant NSCLC highly resistant to immunotherapy, with the phenotype potentially serving as a promising signature to predict immunotherapy efficacy. Informed circulating tumor DNA (ctDNA) detection in EGFR-mutant NSCLC could help identify patients nonresponsive to neoadjuvant immunochemotherapy. These findings provide supportive data for the utilization of neoadjuvant immunochemotherapy and insight into immune resistance in EGFR-mutant NSCLC.

9.
Med Biol Eng Comput ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698188

ABSTRACT

Condylar-base-associated multiple mandibular fractures are more prevalent than single ones. Direct trauma to mandibular symphysis, body or angle are prone to induce indirect condylar fracture. However, little is known about the effects of various rigid internal fixation modalities in condylar base for relevant multiple mandibular fractures, especially when we are confused in the selection of operative approach. Within the finite element analysis, straight-titanium-plate implanting positions in condylar base contained posterolateral zone (I), anterolateral zone (II), and intermediate zone (III). Von Mises stress (SS) in devices and bone and mandibular displacement (DT) were solved, while maximum values (SSmax and DTmax) were documented. For rigid internal fixation in condylar-base-and-symphysis fractures, I + II modality exhibited least SSmax in screws and cortical bone and least DTmax, I + III modality exhibited least SSmax in plates. For rigid internal fixation in condylar-base-and-contralateral-body fractures, I + III modality exhibited least SSmax in screws and cortical bone, I + II modality exhibited least SSmax in plates and least DTmax. For rigid internal fixation in condylar-base-and-contralateral-angle fractures, I + III modality exhibited least DTmax. The findings suggest that either I + II or I + III modality is a valid guaranty for rigid internal fixation of condylar base fractures concomitant with symphysis, contralateral body or angle fractures.

10.
Chem Sci ; 15(17): 6522-6529, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699280

ABSTRACT

Site selective functionalization of inert remote C(sp3)-H bonds to increase molecular complexity offers vital potential for chemical synthesis and new drug development, thus it has been attracting ongoing research interest. In particular, typical ß-C(sp3)-H arylation methods using chelation-assisted metal catalysis or metal-catalyzed oxidative/photochemical in situ generated allyl C(sp3)-H bond processes have been well developed. However, radical-mediated direct ß-C(sp3)-H arylation of carbonyls remains elusive. Herein, we describe an iodoarene-directed photoredox ß-C(sp3)-H arylation of 1-(o-iodoaryl)alkan-1-ones with cyanoarenes via halogen atom transfer (XAT) and hydrogen atom transfer (HAT). The method involves diethylaminoethyl radical-mediated generation of an aryl radical intermediate via XAT, then directed 1,5-HAT to form the remote alkyl radical intermediate and radical-radical coupling with cyanoarenes, and is applicable to a broad scope of unactivated remote C(sp3)-H bonds like ß-C(sp3)-H bonds of o-iodoaryl-substituted alkanones and α-C(sp3)-H bonds of o-iodoarylamides. Experimental findings are supported by computational studies (DFT calculations), revealing that this method operates via a radical-relay stepwise mechanism involving multiple SET, XAT, 1,5-HAT and radical-radical coupling processes.

11.
ACS Appl Mater Interfaces ; 16(20): 26209-26216, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38733341

ABSTRACT

Thick electrodes with high mass loading and increased content of active materials are critical for achieving higher energy density in contemporary lithium-ion batteries (LIBs). Nonetheless, producing thick electrodes through the commonly used slurry coating technology remains a formidable challenge. In this study, we have addressed this challenge by developing a dry electrode technology by using ultralong multiwalled carbon nanotubes (MWCNT) as a conductive additive and secondary binder. The mixing process of electrode compositions and the fibrillation process of the polytetrafluoroethylene (PTFE) binder were optimized. The resulting LiCoO2 (LCO) electrode exhibited a remarkable mass loading of 48 mg cm-2 and an active material content of 95 wt %. Notably, the thick LCO electrode demonstrated a superior mechanical strength and electrochemical performance. After 100 cycles at a current density of 1/3 C, the electrode still exhibited a capacity retention of 91% of its initial capacity. This dry electrode technology provides a practicable and scalable approach to the powder-to-film LIB electrode manufacturing process.

12.
Life Sci Space Res (Amst) ; 41: 136-145, 2024 May.
Article in English | MEDLINE | ID: mdl-38670640

ABSTRACT

To systematically evaluate the effect of simulated long-term spaceflight composite stress (LSCS) in hippocampus and gain more insights into the transcriptomic landscape and molecular mechanism, we performed whole-transcriptome sequencing based on the control group (Ctrl) and the simulated long-term spaceflight composite stress group (LSCS) from six hippocampus of rats. Subsequently, differential expression analysis was performed on the Ctrl and LSCS groups, followed by enrichment analysis and functional interaction prediction analysis to investigate gene-regulatory circuits in LSCS. In addition, competitive endogenous RNA (ceRNA) network was constructed to gain insights into genetic interaction. The result showed that 276 differentially expressed messenger RNAs (DEmRNAs), 139 differentially expressed long non-coding RNAs (DElncRNAs), 103 differentially expressed circular RNAs (DEcircRNAs), and 52 differentially expressed microRNAs (DEmiRNAs) were found in LSCS samples compared with the controls, which were then subjected to enrichment analysis of Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to find potential functions. PI3K-Akt signaling pathway and MAPK signaling pathway may play fundamental roles in the pathogenesis of LSCS. A ceRNA network was constructed with the predicted 340 DE pairs, which revealed the interaction roles of 220 DEmiRNA-DEmRNA pairs, 76 DEmiRNA-DElncRNA pairs, and 44 DEmiRNA-DEcircRNA pairs. Further, Thrombospondins2 was found to be a key target among those ceRNAs. Overall, we conducted for the first time a full transcriptomic analysis of the response of hippocampus to the LSCS that involved a potential ceRNA network, thus providing a basis to study the underlying mechanism of the LSCS.


Subject(s)
Gene Regulatory Networks , Hippocampus , Transcriptome , Animals , Rats , Male , Hippocampus/metabolism , RNA, Long Noncoding/genetics , Stress, Physiological , MicroRNAs/genetics , RNA, Messenger/genetics , Sequence Analysis, RNA , Rats, Sprague-Dawley , RNA, Circular/genetics , Gene Expression Profiling , RNA, Competitive Endogenous
13.
Oncoimmunology ; 13(1): 2340154, 2024.
Article in English | MEDLINE | ID: mdl-38601319

ABSTRACT

Metabolism reprogramming within the tumor microenvironment (TME) can have a profound impact on immune cells. Identifying the association between metabolic phenotypes and immune cells in lung adenocarcinoma (LUAD) may reveal mechanisms of resistance to immune checkpoint inhibitors (ICIs). Metabolic phenotypes were classified by expression of metabolic genes. Somatic mutations and transcriptomic features were compared across the different metabolic phenotypes. The metabolic phenotype of LUAD is predominantly determined by reductase-oxidative activity and is divided into two categories: redoxhigh LUAD and redoxlow LUAD. Genetically, redoxhigh LUAD is mainly driven by mutations in KEAP1, STK11, NRF2, or SMARCA4. These mutations are more prevalent in redoxhigh LUAD (72.5%) compared to redoxlow LUAD (17.4%), whereas EGFR mutations are more common in redoxlow LUAD (19.0% vs. 0.7%). Single-cell RNA profiling of pre-treatment and post-treatment samples from patients receiving neoadjuvant chemoimmunotherapy revealed that tissue-resident memory CD8+ T cells are responders to ICIs. However, these cells are significantly reduced in redoxhigh LUAD. The redoxhigh phenotype is primarily attributed to tumor cells and is positively associated with mTORC1 signaling. LUAD with the redoxhigh phenotype demonstrates a lower response rate (39.1% vs. 70.8%, p = 0.001), shorter progression-free survival (3.3 vs. 14.6 months, p = 0.004), and overall survival (12.1 vs. 31.2 months, p = 0.022) when treated with ICIs. The redoxhigh phenotype in LUAD is predominantly driven by mutations in KEAP1, STK11, NRF2, and SMARCA4. This phenotype diminishes the number of tissue-resident memory CD8+ T cells and attenuates the efficacy of ICIs.


Subject(s)
AMP-Activated Protein Kinase Kinases , Adenocarcinoma of Lung , Lung Neoplasms , Humans , NF-E2-Related Factor 2/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Oxidation-Reduction , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Immunotherapy , Mutation , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , T-Lymphocytes , CD8-Positive T-Lymphocytes , Tumor Microenvironment/genetics , DNA Helicases , Nuclear Proteins , Transcription Factors
15.
Front Public Health ; 12: 1365589, 2024.
Article in English | MEDLINE | ID: mdl-38605880

ABSTRACT

Objective: Our network meta-analysis aimed to ascertain the effect of physical activity on the visual-spatial working memory of individuals with mild cognitive impairment and Alzheimer's disease as well as to propose tailored exercise interventions for each group. Methods: Employing a frequentist approach, we performed a network meta-analysis to compare the effectiveness of different exercise interventions in improving the visual-spatial working memory of individuals with mild cognitive impairment and Alzheimer's disease. Subsequently, we explored the moderating variables influencing the effectiveness of the exercise interventions through a subgroup analysis. Results: We included 34 articles involving 3,074 participants in the meta-analysis, comprised of 1,537 participants from studies on mild cognitive impairment and 1,537 participants from studies on Alzheimer's disease. The articles included exhibited an average quality score of 6.6 (score studies) and 6.75 (reaction time [RT] studies), all passing the inconsistency test (p > 0.05). In the mild cognitive impairment literature, mind-body exercise emerged as the most effective exercise intervention (SMD = 0.61, 95% CI: 0.07-1.14). In Alzheimer's disease research, aerobic exercise was identified as the optimal exercise intervention (SMD = 0.39, 95% CI: 0.06-0.71). Conclusion: The results of the subgroup analysis suggest that the most effective approach to enhancing the visual-spatial working memory of individuals with mild cognitive impairment entails exercising at a frequency of three or more times per week for over 60 min each time and at a moderate intensity for more than 3 months. Suitable exercise options include mind-body exercise, multicomponent exercise, resistance exercise, and aerobic exercise. For individuals with Alzheimer's disease, we recommend moderately intense exercise twice per week for over 90 min per session and for a duration of 3 months or longer, with exercise options encompassing aerobic exercise and resistance exercise.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/therapy , Cognitive Dysfunction/therapy , Cognitive Dysfunction/psychology , Exercise , Memory, Short-Term , Network Meta-Analysis
16.
Thorac Cancer ; 15(14): 1119-1131, 2024 May.
Article in English | MEDLINE | ID: mdl-38558529

ABSTRACT

BACKGROUND: Tertiary lymphoid structures (TLSs) affect the prognosis and efficacy of immunotherapy in patients with non-small cell lung cancer (NSCLC), but the underlying mechanisms are not well understood. METHODS: TLSs were identified and categorized online from the Cancer Digital Slide Archive (CDSA). Overall survival (OS) and disease-free survival (DFS) were analyzed. GSE111414 and GSE136961 datasets were downloaded from the GEO database. GSVA, GO and KEGG were used to explore the signaling pathways. Immune cell infiltration was analyzed by xCell, ssGSEA and MCP-counter. The analysis of WGCNA, Lasso and multivariate cox regression were conducted to develop a gene risk score model based on the SU2C-MARK cohort. RESULTS: TLS-positive was a protective factor for OS according to multivariate cox regression analysis (p = 0.029). Both the TLS-positive and TLS-mature groups exhibited genes enrichment in immune activation pathways. The TLS-mature group showed more activated dendritic cell infiltration than the TLS-immature group. We screened TLS-related genes using WGCNA. Lasso and multivariate cox regression analysis were used to construct a five-genes (RGS8, RUF4, HLA-DQB2, THEMIS, and TRBV12-5) risk score model, the progression free survival (PFS) and OS of patients in the low-risk group were markedly superior to those in the high-risk group (p < 0.0001; p = 0.0015, respectively). Calibration and ROC curves indicated that the combined model with gene risk score and clinical features could predict the PFS of patients who have received immunotherapy more accurately than a single clinical factor. CONCLUSIONS: Our data suggested a pivotal role of TLSs formation in survival outcome and immunotherapy response of NSCLC patients. Tumors with mature TLS formation showed more activated immune microenvironment. In addition, the model constructed by TLS-related genes could predict the response to immunotherapy and is meaningful for clinical decision-making.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immunotherapy , Lung Neoplasms , Tertiary Lymphoid Structures , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Immunotherapy/methods , Tertiary Lymphoid Structures/genetics , Prognosis , Female , Male , Biomarkers, Tumor/genetics
17.
Cell Biosci ; 14(1): 55, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678262

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease with limited disease-modifying treatments. Drug repositioning strategy has now emerged as a promising approach for anti-AD drug discovery. Using 5×FAD mice and Aß-treated neurons in culture, we tested the efficacy of Y-2, a compounded drug containing the antioxidant Edaravone (Eda), a pyrazolone and (+)-Borneol, an anti-inflammatory diterpenoid from cinnamon, approved for use in amyotrophic lateral sclerosis patients. RESULTS: We examined effects of Y-2 versus Eda alone by i.p. administered in 8-week-old 5×FAD mice (females) for 4 months by comparing cognitive function, Aß pathologies, neuronal necroptosis and neuroinflammation. Using primary neurons and astrocytes, as well as neuronal and astrocytic cell lines, we elucidated the molecular mechanisms of Y-2 by examining neuronal injury, astrocyte-mediated inflammation and necroptosis. Here, we find that Y-2 improves cognitive function in AD mice. Histopathological data show that Y-2, better than Eda alone, markedly ameliorates Aß pathologies including Aß burden, astrogliosis/microgliosis, and Tau phosphorylation. In addition, Y-2 reduces Aß-induced neuronal injury including neurite damage, mitochondrial impairment, reactive oxygen species production and NAD+ depletion. Notably, Y-2 inhibits astrocyte-mediated neuroinflammation and attenuates TNF-α-triggered neuronal necroptosis in cell cultures and AD mice. RNA-seq further demonstrates that Y-2, compared to Eda, indeed upregulates anti-inflammation pathways in astrocytes. CONCLUSIONS: Our findings infer that Y-2, better than Eda alone, mitigates AD pathology and may provide a potential drug candidate for AD treatment.

18.
Sci Total Environ ; 931: 172804, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38679095

ABSTRACT

Clarifying the responses of human activities and climate change to the water cycle under variable environments is crucial for accurately assessing regional water balance. An analysis of the changes in actual evapotranspiration and its driving factors was conducted in the global high-elevation mountains during the period from 2001 to 2022. Utilizing 18 formulas for calculating evapotranspiration, which are based on comprehensive, temperature, radiation, and mass transfer, and then simulated the variations in reference evapotranspiration. Furthermore, we optimized the ET simulation model based on the most effective simulation results and projected future changes using scenario simulation data. Our findings reveal that: 1) ET at high-elevation mountains has significantly decreased at an average rate of 3.923 %/a, with monthly values ranging from 31.179 to 33.652 mm and an average of 32.646 mm; 2) The radiation-based model of Irmark-Allen is particularly well-suited for simulating ET at high-elevation mountains, with precision analysis and the Taylor diagram confirming its superior simulation performance. After optimizing the model using the method of least squares, the value of R2 before and after the optimization were 0.633 and 0.853, respectively. 3) An upward trend in ET under both SSP245 and SSP585 scenario in future simulation projections. Attribution analysis has identified Vapor Pressure Deficit as the key positive driver influencing the change of ET in global high-elevation mountains. Structural equation modeling further reveals that variations in net radiation and precipitation play a significant role in altering evapotranspiration rates. Meanwhile,The water balance analysis reveals that ET has been declining from 2001 to 2022. This phenomenon can be largely attributed to the substantial decline in vapor pressure deficit, the rise in the Normalized Difference Vegetation Index signifying increased vegetation cover, and the reduction in shallow soil moisture during the same period. These factors collectively explain the notable decrease in ET observed in high-elevation mountains.

19.
J Transl Med ; 22(1): 326, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566102

ABSTRACT

BACKGROUND: The effects of gut microbiota and metabolites on the responses to immune checkpoint inhibitors (ICIs) in advanced epidermal growth factor receptor (EGFR) wild-type non-small cell lung cancer (NSCLC) have been studied. However, their effects on EGFR-mutated (EGFR +) NSCLC remain unknown. METHODS: We prospectively recorded the clinicopathological characteristics of patients with advanced EGFR + NSCLC and assessed potential associations between the use of antibiotics or probiotics and immunotherapy efficacy. Fecal samples were collected at baseline, early on-treatment, response and progression status and were subjected to metagenomic next-generation sequencing and ultra-high-performance liquid chromatography-mass spectrometry analyses to assess the effects of gut microbiota and metabolites on immunotherapy efficacy. RESULTS: The clinical data of 74 advanced EGFR + NSCLC patients were complete and 18 patients' fecal samples were dynamically collected. Patients that used antibiotics had shorter progression-free survival (PFS) (mPFS, 4.8 vs. 6.7 months; P = 0.037); probiotics had no impact on PFS. Two dynamic types of gut microbiota during immunotherapy were identified: one type showed the lowest relative abundance at the response time point, whereas the other type showed the highest abundance at the response time point. Metabolomics revealed significant differences in metabolites distribution between responders and non-responders. Deoxycholic acid, glycerol, and quinolinic acid were enriched in responders, whereas L-citrulline was enriched in non-responders. There was a significant correlation between gut microbiota and metabolites. CONCLUSIONS: The use of antibiotics weakens immunotherapy efficacy in patients with advanced EGFR + NSCLC. The distribution characteristics and dynamic changes of gut microbiota and metabolites may indicate the efficacy of immunotherapy in advanced EGFR + NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Gastrointestinal Microbiome , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Immunotherapy , ErbB Receptors/genetics , Anti-Bacterial Agents/therapeutic use
20.
Biomed Environ Sci ; 37(3): 294-302, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38582993

ABSTRACT

Objective: Viral encephalitis is an infectious disease severely affecting human health. It is caused by a wide variety of viral pathogens, including herpes viruses, flaviviruses, enteroviruses, and other viruses. The laboratory diagnosis of viral encephalitis is a worldwide challenge. Recently, high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections. Thus, In this study, we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing. Methods: We designed nine pairs of specific polymerase chain reaction (PCR) primers for the 12 viruses by reviewing the relevant literature. The detection ability of the primers was verified by software simulation and the detection of known positive samples. Amplicon sequencing was used to validate the samples, and consistency was compared with Sanger sequencing. Results: The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×, and the sequence lengths were consistent with the sizes of the predicted amplicons. The sequences were verified using the National Center for Biotechnology Information BLAST, and all results were consistent with the results of Sanger sequencing. Conclusion: Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis. It is also a useful tool for the high-volume screening of clinical samples.


Subject(s)
Encephalitis, Viral , Viruses , Humans , Encephalitis, Viral/diagnosis , Viruses/genetics , High-Throughput Nucleotide Sequencing/methods , Polymerase Chain Reaction , DNA, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...