Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(5): e202214814, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36461785

ABSTRACT

Efficient biosynthesis of microbial bioactive natural products (NPs) is beneficial for the survival of producers, while self-protection is necessary to avoid self-harm resulting from over-accumulation of NPs. The underlying mechanisms for the effective but tolerable production of bioactive NPs are not well understood. Herein, in the biosynthesis of two fungal polyketide mycotoxins aurovertin E (1) and asteltoxin, we show that the cyclases in the gene clusters promote the release of the polyketide backbone, and reveal that a signal peptide is crucial for their subcellular localization and full activity. Meanwhile, the fungus adopts enzymatic acetylation as the major detoxification pathway of 1. If intermediates are over-produced, the non-enzymatic shunt pathways work as salvage pathways to avoid excessive accumulation of the toxic metabolites for self-protection. These findings provided new insight into the interplay of efficient backbone release and multiple detoxification strategies for the production of fungal bioactive NPs.


Subject(s)
Mycotoxins , Polyketides , Polyketides/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Protein Processing, Post-Translational , Multigene Family
2.
J Agric Food Chem ; 71(1): 311-319, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36571252

ABSTRACT

Mycotoxins have substantial impacts on agricultural production and food preservation. Some have high similarities in bioactivity but subtle differences on structures from various fungal producers. Understanding of their complex cross-biosynthesis will provide new insights into enzyme functions and food safety. Here, based on structurally related mycotoxins, such as aurovertins, asteltoxin, and citreoviridin, we showed that methyltransferase (MT)-catalyzed methylation is required for efficient oxidation and polyketide stability. MTs have broad interactions with polyketide synthases and flavin-containing monooxygenases (FMOs), while MT AstB is required for FMO AstC functionality in vivo. FMOs have common catalysis on pyrone-polyene intermediates but different catalytic specificity and efficiency on oxidative intermediates for the selective production of more toxic and complex mycotoxins. Thus, the subtle protein interaction and elaborate versatile catalysis of biosynthetic enzymes contribute to the efficient and selective biosynthesis of these structure-related mycotoxins and provide the basis to re-evaluate and control mycotoxins for agricultural and food safety.


Subject(s)
Mycotoxins , Polyketides , Mycotoxins/chemistry , Polyketides/metabolism , Methyltransferases , Polyketide Synthases/metabolism , Catalysis
3.
Eur J Med Chem ; 229: 114067, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34973507

ABSTRACT

Drugs have been largely inspired from natural products, while enzymes underlying their biosynthesis have enabled complex structures and diverse bioactivities. Nevertheless, the high enzyme specificity and limited in vivo precursor types have restricted the natural product reservoir, but Nature has imprinted natural products with active sites, which can be readily modified by chemosynthesis with various functional groups for more favorable druggability. Here in the less exploited fungal natural products, we introduced CtvA, a polyketide synthase for a mycotoxin citreoviridin biosynthesis in Aspergillus, into an endophytic fungus Calcarisporium arbuscula to expand tetrahydrofuran (THF) into a dioxabicyclo-octane (DBO) ring moiety based on versatility and promiscuity of the aurovertin biosynthetic enzyme. Alternative acylations on the hydroxyl groups essential for cell toxicity by chemosynthesis produced compounds with improved anti-tumor activities and pharmacokinetics. Thus, we showed an effective strategic way to optimize the fungal natural product efficiently for more promising drug development.


Subject(s)
Antineoplastic Agents/chemistry , Aurovertins/chemistry , Biological Products/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Octanes/chemistry , Polyketide Synthases/metabolism , Acylation , Antineoplastic Agents/pharmacokinetics , Aspergillus , Biological Products/pharmacokinetics , Cell Proliferation , Furans/chemistry , Humans , Hypocreales , Mycotoxins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...