Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
J Chromatogr A ; 1728: 464991, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38788322

ABSTRACT

The abnormal estrogens levels in human body can cause many side effects and diseases, but the quantitative detection of the trace estrogens in complex biological samples still remains great challenge. Here we reported the fabrication of a novel core-shell structured magnetic cyclodextrin microporous organic network (Fe3O4@CD-MON) for rapid magnetic solid phase extraction (MSPE) of four estrogens in human serum and urine samples prior to HPLC-UV determination. The uniform spherical core-shell Fe3O4@CD-MONs was successfully regulated by altering the reactive monomers and solvents. The Fe3O4@CD-MONs owned high specific surface area, good hydrophobicity, large superparamagnetism, and abundant extraction sites for estrogens. Under optimal conditions, the proposed MSPE-HPLC-UV method provided wide linearity range (2.0-400 µg L-1), low limits of detection (0.5-1.0 µg L-1), large enrichment factors (183-198), less adsorbent consumption (3 mg), short extraction time (3 min), and good stability and reusability (at least 8 cycles). The established method had also been successfully applied to the enrichment and detection of four estrogens in serum and urine samples with a recovery of 88.4-105.1 % and a relative standard deviation of 1.0-5.9 %. This work confirmed the feasibility of solvent and monomer regulation synthesis of Fe3O4@CD-MON composites, and revealed the great prospects of magnetic CD-MONs for efficient enrichment of trace estrogens in complex biological samples.


Subject(s)
Estrogens , Limit of Detection , Solid Phase Extraction , beta-Cyclodextrins , Humans , Chromatography, High Pressure Liquid/methods , Estrogens/urine , Estrogens/blood , Estrogens/isolation & purification , Estrogens/analysis , Estrogens/chemistry , Solid Phase Extraction/methods , beta-Cyclodextrins/chemistry , Solvents/chemistry , Porosity , Magnetite Nanoparticles/chemistry , Adsorption
2.
J Chromatogr A ; 1715: 464625, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38171066

ABSTRACT

Endocrine disrupting chemicals (EDCs) are a typical class of natural or man-made endogenous hormone agonists or antagonists that can directly or potentially interfere with human endocrine system. However, it is still difficult to analyze trace EDCs directly from complex environment and food matrices. Therefore, the proper sample pretreatment is highly desired and the preparation of efficient adsorbents is of great challenge and importance. Herein, we report the facile one-pot solvothermal synthesis of Fe3O4 nanoparticle doped magnetic ß-cyclodextrin microporous organic network composites (MCD-MONs) for the magnetic solid phase extraction (MSPE) of four phenolic EDCs in water and food takeaway boxes prior to the high-performance liquid chromatography analysis. The sheet-like Fe3O4 doped MCD-MONs offered good magnetic property (16.5 emu g-1) and stability, and provided numerous hydrogen bonding, hydrophobic, π-π, and host-guest interaction sites for EDCs. Under the optimal experimental conditions, the established method was successfully verified with wide linear range (2.0-1000 µg L-1), low limits of detection (0.6-1.0 µg L-1), good precisions (intra-day and inter-day RSDs < 5.2 %, n = 3), large enrichment factors (88-98) and adsorption capacity (90.3-255.8 mg g-1), short extraction time (6 min), less adsorbent consumption (3 mg), and good reusability (at least 8 times) for EDCs. The proposed method was successfully applied to detect the trace EDCs in real samples with the recovery of 84.0-99.7 %. This work demonstrated the great potential of MCD-MONs for the efficient MSPE of trace EDCs from complex food takeaway boxes and water samples and uncovered the prospect of CD-based MONs in sample pretreatment.


Subject(s)
Endocrine Disruptors , beta-Cyclodextrins , Humans , Endocrine Disruptors/analysis , Water/chemistry , Magnetics/methods , Chromatography, High Pressure Liquid , Magnetic Phenomena , beta-Cyclodextrins/chemistry , Solid Phase Extraction/methods , Limit of Detection
3.
Huan Jing Ke Xue ; 42(7): 3232-3241, 2021 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-34212649

ABSTRACT

To increase crops yields, applying large amounts of fertilizers has become increasingly common in agricultural regions, resulting in NO3--N groundwater pollution. Agricultural non-point pollution is the main source of groundwater NO3--N pollution. To ensure drinking water safety and quality, it is crucial to clarify the sources of NO3--N pollution in agricultural regions. In this study, 35 sampling sites were randomly selected in the Qingdao agricultural area in 2009 and 2019. The spatial distribution of NO3--N concentration was analyzed by the inverse distance weighting method (IDW). The nitrogen and oxygen isotopes were used as a tool to trace sources of NO3--N and the SIAR model was used to quantify contribution proportion of pollution sources. The results showed that the concentration of NO3--N (average) in groundwater in Qingdao has been reduced from 38.49 mg·L-1 in 2009 to 22.37 mg·L-1 in 2019, but it is still higher than the maximum allowable concentration of NO3--N in drinking water set by the World Health Organization (WHO). The NO3--N concentration gradually increased from south to north both in 2009 and 2019. The cross diagram of δ15N-NO3- and δ18O-NO3- show that the main sources of NO3--N in groundwater in Qingdao are chemical fertilizers, soil nitrogen, and manure and sewage. Water isotopes indicate that precipitation was the main source of groundwater in Qingdao. The SIAR model results indicated that the contribution of each source ranked as follows:manure and sewage (47.42%) > soil nitrogen (27.80%) > chemical fertilizer (14.32%) > atmospheric nitrogen depositions (10.43%). From 2009 to 2019, the quality of groundwater in Qingdao has been improved, but NO3--N pollution still cannot be ignored. According to the results, prevention and control should be made to ensure the safety of drinking water and the sustainable development of agriculture.


Subject(s)
Groundwater , Water Pollutants, Chemical , Agriculture , Environmental Monitoring , Fertilizers/analysis , Nitrates/analysis , Nitrogen Isotopes/analysis , Water Pollutants, Chemical/analysis
4.
Ying Yong Sheng Tai Xue Bao ; 29(5): 1470-1478, 2018 May.
Article in Chinese | MEDLINE | ID: mdl-29797879

ABSTRACT

To clarify the microbial pathway of the N2O production and consumption under different fertilizers and provide theoretical basis for the reduction of N2O emission and rational management of fertilization in vegetable soils, we examined dynamics of N2O flux and isotope signatures under different fertilizer treatments in the vegetable soils of Beijing, by setting up four treatments (organic-acetylene, organic-nonacetylene, inorganic-acetylene, inorganic-nonacetylene) and using the stable isotope technique of natural N2O abundance. The results showed that the cumulative N2O emission from organic-acetylene group, organic-nonacetylene group, inorganic-acetylene group and inorganic-nonacetylene group was (374±37), (283±34), (458±36), (355±41) g·m-2 in cabbage growing season, respectively. N2O fluxes were significantly lower in treatments with organic fertilizer than those with inorganic fertilizer and significantly higher in acetylene group than nonacetylene group. The degree of N2O reduction were similar in both fertilizer treatments, and higher nitrification was found in inorganic fertilizer than organic fertilizer treatments. Acetylene only inhibited partial nitrification and partial N2O reduction at the peak of N2O emission. When the emission was reduced, N2O reduction could be completely suppressed. Therefore, the inorganic fertilizer might trigger nitrification and promote higher N2O emission. The high concentration of N2O could withstand that acetylene to inhibite N2O reduction. Hence, using organic fertilizers instead of some inorganic ones could effectively reduce N2O emission in vegetable soils of Beijing. The N2O concentration threshold should be considered when we identify N2O source by acetylene inhibition method.


Subject(s)
Fertilizers , Nitrous Oxide , Soil/chemistry , Beijing , Nitrogen , Vegetables
5.
Ying Yong Sheng Tai Xue Bao ; 28(7): 2269-2276, 2017 Jul 18.
Article in Chinese | MEDLINE | ID: mdl-29741059

ABSTRACT

To understand the mechanisms of agricultural N2O emission, we investigated the N2O emission dynamics, the N2O isotope signatures, and the site preference value under different soil water conditions in the vegetable farmland of North China, by using the stable isotope technique and the acetylene inhibition method. The results demonstrated that N2O emission was significantly affec-ted by the water condition, and N2O emissions from soil with water-filled pore space (WFPS) of 70% were significantly higher than that with 50% WFPS. N2O emission occurred mostly in the early stage of fertilization, and decreased rapidly in the later stage of fertilization. At 50% WFPS, nitrification was the major process generating N2O during the early fertilization stage, accounting for approximately 90% of the N2O emission. However, the contribution of nitrification decreased sharply, whereas denitrification became the dominant process, accounting for 80% of the N2O emission 7 days after the fertilization. On the other hand, at 70% WFPS, denitrification was the main process releasing N2O during the early fertilization stage, decreasing from 70% to 40% and then gradually increasing to 80% 10 days after the fertilization. Overall, N2O emission was mainly dominated by the denitrification. The effect of different water treatments on soil nitrification and denitrification took place mainly in the early stage of fertilization, and N2O emission was gradually dominated by the denitrification at the later stage. These results suggested we could reduce N2O emission by approp-riately reducing the amount of irrigation in the vegetable farmland of North China.


Subject(s)
Soil , Vegetables , China , Farms , Nitrous Oxide , Water
6.
Ying Yong Sheng Tai Xue Bao ; 28(7): 2344-2352, 2017 Jul 18.
Article in Chinese | MEDLINE | ID: mdl-29741069

ABSTRACT

As one of three major greenhouse gases, nitrous oxide (N2O) has solicited substantial attention. Stable isotope has been widely used to explore the sources of N2O emissions. Here, we briefly introduced the microbial processes involved in N2O emissions, and the main influencing factors. We further summarized the development of N2O isotope signature of δ15N, δ18O and SP (site preference of 15N in different positions of N2O molecule) in exploring the N2O formation mechanism. The application of these techniques, especially the SP values, is still at the primary stage in China. Therefore, this paper focused on the development of the isotope ratios analysis in partitioning N2O sources from foreign countries, and put forward suggestions on the future research in China.


Subject(s)
Isotopes , Nitrous Oxide , China , Environment
7.
Neural Regen Res ; 10(5): 819-28, 2015 May.
Article in English | MEDLINE | ID: mdl-26109961

ABSTRACT

OBJECTIVE: China is the only country where nerve growth factor is approved for large-scale use as a clinical medicine. More than 10 years ago, in 2003, nerve growth factor injection was listed as a national drug. The goal of this article is to evaluate comprehensively the efficacy and safety of nerve growth factor for the treatment of neurological diseases. DATA RETRIEVAL: A computer-based retrieval was performed from six databases, including the Cochrane Library, PubMed, EMBASE, Sino Med, CNKI, and the VIP database, searching from the clinical establishment of nerve growth factor for treatment until December 31, 2013. The key words for the searches were "nerve growth factor, randomized controlled trials" in Chinese and in English. INCLUSION CRITERIA: any study published in English or Chinese referring to randomized controlled trials of nerve growth factor; patients with neurological diseases such as peripheral nerve injury, central nerve injury, cranial neuropathy, and nervous system infections; patients older than 7 years; similar research methods and outcomes assessing symptoms; and measurement of nerve conduction velocities. The meta-analysis was conducted using Review Manager 5.2.3 software. MAIN OUTCOME MEASURES: The total effective rate, the incidence of adverse effects, and the nerve conduction velocity were recorded for each study. RESULTS: Sixty-four studies involving 6,297 patients with neurological diseases were included. The total effective rate in the group treated with nerve growth factor was significantly higher than that in the control group (P < 0.0001, RR: 1.35, 95%CI: 1.30-1.40). The average nerve conduction velocity in the nerve growth factor group was significantly higher than that in the control group (P < 0.00001, MD: 4.59 m/s, 95%CI: 4.12-5.06). The incidence of pain or scleroma at the injection site in the nerve growth factor group was also higher than that in the control group (P < 0.00001, RR: 6.30, 95%CI: 3.53-11.27), but such adverse effects were mild. CONCLUSION: Nerve growth factor can significantly improve nerve function in patients with nervous system disease and is safe and effective.

8.
J Bacteriol ; 187(24): 8537-41, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16321963

ABSTRACT

A new sigma factor, SigF, was identified from the social and developmental bacterium Myxococcus xanthus. SigF is required for fruiting body formation during development as well as social motility during vegetative growth. Analysis of gene expression indicates that it is possible that the sigF gene is involved in regulation of an unidentified gene for social motility.


Subject(s)
Bacterial Proteins/physiology , Gene Expression Regulation, Bacterial , Myxococcus xanthus/physiology , Sigma Factor/physiology , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Gene Deletion , Molecular Sequence Data , Morphogenesis , Movement , Mutagenesis, Insertional , Myxococcus xanthus/cytology , Myxococcus xanthus/genetics , Myxococcus xanthus/growth & development , Photomicrography , Sequence Alignment , Sigma Factor/chemistry , Sigma Factor/genetics , Transcription Initiation Site , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...