Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 37(10): e23202, 2023 10.
Article in English | MEDLINE | ID: mdl-37732633

ABSTRACT

Trichinellosis caused by Trichinella spiralis (T. spiralis) is a major food-borne parasitic zoonosis worldwide. Prevention of trichinellosis is an effective strategy to improve patient quality of life. Macrophage migration inhibitory factor (MIF) is closely related to the occurrence and development of several parasitic diseases. Studying the impact of MIF deficiency (Mif-/- ) on the alterations in host fecal microbiota due to T. spiralis infection may contribute to proposing a novel dual therapeutic approach for trichinellosis. To reveal the diversity and differences in fecal microbial composition, feces were collected from T. spiralis-uninfected and T. spiralis-infected wild-type (WT) and MIF knockout (KO) C57BL/6 mice at 0, 7, 14, and 35 days post-infection (dpi), and the samples were sent for 16S rRNA amplicon sequencing on the Illumina NovaSeq platform. Flow cytometry was used to determine the expression levels of IFN-γ and IL-4 in the CD4+ /CD8+ T-cell sets of mouse spleens. The results showed that operational taxonomic unit (OTU) clustering, relative abundance of microbial composition, alpha diversity, and beta diversity exhibited significant changes among the eight groups. The LEfSe analysis selected several potential biomarkers at the genus or species level, including Akkermansia muciniphila, Lactobacillus murinus, Coprococcus catus, Firmicutes bacterium M10_2, Parabacteroides sp. CT06, and Bacteroides between the KTs and WTs groups. The predicted bacterial functions of the fecal microbiota were mainly involved in metabolism, such as the metabolism of carbohydrates, amino acids, energy, cofactors, vitamins, nucleotides, glycans, and lipids. Flow cytometry revealed an increased CD3+ CD8- /CD3+ CD8+ T-cell ratio and increased IFN-γ and IL-4 levels in CD3+ CD8- T-cell sets from WT and MIF KO mice at 7 dpi. The results indicated that both MIF KO and infection time have a significant influence on the CD3+ CD8- IFN-γ+ and CD3+ CD8- IL-4+ response in mice after T. spiralis. In conclusion, this research showed alterations of the fecal microbiota and immune response in both WT and MIF KO mice before and after T. spiralis infection. These results revealed a potential role of MIF in regulating the pathogenesis of trichinellosis related to the intestinal microbiota. Importantly, the selected potential biomarkers combined with MIF will also offer a novel therapeutic approach to treat trichinellosis in the future.


Subject(s)
Macrophage Migration-Inhibitory Factors , Microbiota , Trichinella spiralis , Trichinellosis , Animals , Humans , Mice , Interleukin-4 , Intramolecular Oxidoreductases , Macrophage Migration-Inhibitory Factors/genetics , Mice, Inbred C57BL , Quality of Life , RNA, Ribosomal, 16S/genetics
2.
Front Microbiol ; 13: 857786, 2022.
Article in English | MEDLINE | ID: mdl-35401479

ABSTRACT

Trichinellosis caused by Trichinella spiralis is a worldwide food-borne parasitic zoonosis. Several approaches have been performed to control T. spiralis infection, including veterinary vaccines, which contribute to improving animal health and increasing public health by preventing the transmission of trichinellosis from animals to humans. In the past several decades, many vaccine studies have been performed in effort to control T. spiralis infection by reducing the muscle larvae and adult worms burden. Various candidate antigens, selected from excretory-secretory (ES) products and different functional proteins involved in the process of establishing infection have been investigated in rodent or swine models to explore their protective effect against T. spiralis infection. Moreover, different types of vaccines have been developed to improve the protective effect against T. spiralis infection in rodent or swine models, such as live attenuated vaccines, natural antigen vaccines, recombinant protein vaccines, DNA vaccines, and synthesized epitope vaccines. However, few studies of T. spiralis vaccines have been performed in pigs, and future research should focus on exploring the protective effect of different types of vaccines in swine models. Here, we present an overview of the strategies for the development of effective T. spiralis vaccines and summarize the factors of influencing the effectiveness of vaccines. We also discuss several propositions in improving the effectiveness of vaccines and may provide a route map for future T. spiralis vaccines development.

3.
PLoS Negl Trop Dis ; 15(5): e0009408, 2021 05.
Article in English | MEDLINE | ID: mdl-33970910

ABSTRACT

Trichinellosis is a major foodborne parasitosis caused by Trichinella spiralis. In the present study, a serine protease gene from an adult T. spiralis (Ts-Adsp) cDNA library was cloned, expressed in Escherichia coli and purified by Ni-affinity chromatography. Previous studies of our laboratory have found that mice vaccinated with recombinant Ts-Adsp protein (rTs-Adsp) exhibited partial protection against T. spiralis infection. In this study, the protective effect of rTs-Adsp against T. spiralis infection in pigs was further explored. The cell-mediated and humoral immune responses induced by rTs-Adsp were measured, including the dynamic trends of specific antibody levels (IgG, IgG1, IgG2a and IgM), as well as the levels of cytokines (IFN-γ, IL-2, IL-4, and IL-10) in the serum. Moreover, the changes in T lymphocytes, B lymphocytes, and neutrophils were measured to evaluate cellular immune responses in pigs vaccinated with rTs-Adsp. The results indicated that a Th1-Th2 mixed immune response with Th1 predominant was induced by rTs-Adsp after vaccination. Flow cytometric analysis showed that the proportions of CD4+ T cells, B cells, and neutrophils in the immunized groups were significantly increased. Furthermore, pigs vaccinated with rTs-Adsp exhibited a 50.9% reduction in the muscle larvae burden, compare with pigs from the PBS group five weeks after challenged. Our results suggested that rTs-Adsp elicited partial protection and it could be a potential target molecule for preventing and controlling Trichinella transmission from pigs to human.


Subject(s)
Serine Proteases/immunology , Swine Diseases/immunology , Trichinella spiralis/enzymology , Trichinellosis/veterinary , Animals , Antibodies, Helminth , Cytokines/blood , Helminth Proteins/genetics , Helminth Proteins/immunology , Immunity, Cellular , Immunity, Humoral , Muscles/parasitology , Serine Proteases/genetics , Sus scrofa , Swine , Swine Diseases/prevention & control , Trichinella spiralis/genetics , Trichinella spiralis/growth & development , Trichinellosis/immunology , Vaccination/veterinary
4.
Vet Parasitol ; 297: 109069, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32156436

ABSTRACT

Trichinellosis caused by Trichinella spiralis (T. spiralis) is an important public health problem. DNase II is an acidic endonuclease that catalyzes the degradation of DNA into oligonucleotides. DNase II-7 has been detected at the adult stage of T. spiralis and has been examined in excretory/secretory products. Previous studies have indicated that the DNase II-7 recombinant protein has a high rate of protection against T. spiralis infection in mice. In the present study, the protective effect of DNase II-7 recombinant protein against T. spiralis infection in Large White pigs was further explored. The humoral and cellular immune responses to the DNase II-7 recombinant protein were evaluated, including the dynamic trends of specific IgG, IgG1, IgG2a and IgM antibodies levels, as well as the levels of Th1 (IFN-γ and IL-2) and Th2 (IL-10 and IL-4) cytokines in serum. Our results showed that a Th1 dominated Th1/Th2 mixed immune response was induced by the DNase II-7 recombinant protein for all the time or a short period after vaccination. And the DNase II-7 recombinant protein induced partial protection against T. spiralis infection in pigs, compared to the control group. Our results showed that the DNase II-7 recombinant protein group displayed a 45.7 % reduction in the muscle larvae burden five weeks after being challenged. This study suggested that DNaseII-7 recombinant protein could be used as a potential candidate vaccine against T. spiralis infection in pigs.


Subject(s)
Rodent Diseases , Swine Diseases , Trichinella spiralis , Trichinellosis , Animals , Antibodies, Helminth , Antigens, Helminth , Mice , Mice, Inbred BALB C , Recombinant Proteins , Swine , Swine Diseases/prevention & control , Trichinellosis/prevention & control , Trichinellosis/veterinary , Vaccination/veterinary
5.
Acta Trop ; 211: 105622, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32645301

ABSTRACT

Trichinellosis is caused by Trichinella spiralis (T. spiralis), which is an important public health problem. In this study, a gene encoding a serine protease from adult worms of T. spiralis (Ts-Adsp) was screened from a cDNA library of adult worms and was cloned and expressed in a prokaryotic expression system. The gene Ts-Adsp was subcloned into the eukaryotic expression vector pcDNA3.1(+), which was named pcDNA3.1(+)-Adsp. Previous studies have found that recombinant Ts-Adsp protein (rTs-Adsp) can elicit partial protection against T. spiralis infection in mice. Our aim was to explore the protective effect of combining a DNA vaccine with the rTs-Adsp protein against T. spiralis. One week after the last vaccination, the serum and spleen were obtained. The levels of IgG, IgG1 and IgG2a and cytokine production in serum and spleen cells were analyzed. The results showed that the levels of humoral and cell-mediated immune responses increased in the pcDNA3.1(+)-Adsp/rTs-Adsp group mice and demonstrated that a Th1/Th2 mixed immune response was induced by pcDNA3.1(+)-Adsp/rTs-Adsp after vaccination. Moreover, mice vaccinated with pcDNA3.1(+)-Adsp/rTs-Adsp displayed a 69.50% reduction in muscle larvae burden. This study suggested that mixed immunity could improve the muscle larvae reduction rate.


Subject(s)
Serine Proteases/immunology , Trichinella spiralis/enzymology , Trichinellosis/prevention & control , Vaccines, DNA/immunology , Animals , Cytokines/biosynthesis , DNA , Female , Immunoglobulin G/biosynthesis , Larva/immunology , Mice , Mice, Inbred ICR , Recombinant Proteins/immunology , Trichinellosis/immunology
6.
Microb Pathog ; 99: 264-270, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27574776

ABSTRACT

Cinobufagin (CBG), one active ingredient isolated from Venenum Bufonis, has been demonstrated to have immunoregulatory effect. The aim of this study was to investigate whether CBG can enhance the protective efficacy of formalin-inactivated Salmonella typhimurium (FIST) in mice. ICR mice were immunized with FIST (106 CFU/mouse) alone or mixed with CBG (10, 20, and 40 µg) or alum (200 µg) on day 1 and day 15. Two weeks after the second immunization, serum and spleen were sampled for measuring FIST-specific antibody levels, cytokine levels, and splenocyte proliferation. The results showed that CBG enhanced FIST-specific IgG and IgG2a, the levels of interferon-gamma (IFNγ) and nitric oxide (NO), and the splenocyte proliferation response induced by concanavalin A, lipopolysaccharide, and FIST. In vivo protection studies showed that CBG significantly decreased the bacterial burdens in the spleen and prolonged the survival time of FIST-immunized mice challenged with live Salmonella typhimurium. In vivo IFNγ neutralization led to a significant reduction in FIST-specific IgG2a and IFNγ levels, and in the protective efficacy in CBG/FIST-immunized mice. In conclusion, CBG enhances the protective efficacy of formalin-inactivated Salmonella typhimurium vaccine by promoting the Th1 immune response.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Bufanolides/administration & dosage , Salmonella Vaccines/immunology , Salmonella typhimurium/immunology , Th1 Cells/immunology , Alum Compounds/administration & dosage , Animals , Antibodies, Bacterial/blood , Cell Proliferation , Cytokines/analysis , Disease Models, Animal , Fixatives , Formaldehyde , Immunization Schedule , Immunoglobulin G/blood , Leukocytes, Mononuclear/immunology , Mice, Inbred ICR , Salmonella Infections, Animal , Salmonella Vaccines/administration & dosage , Serum/immunology , Spleen/immunology , Spleen/microbiology , Survival Analysis , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology
7.
Microb Pathog ; 99: 247-252, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27569532

ABSTRACT

Avian pathogenic Escherichia coli (APEC) infections are responsible for great losses in the poultry industry. Quorum sensing (QS) acts as a global regulatory system that controls genes involved in bacterial pathogenesis, metabolism and protein biosynthesis. However, whether QS of APEC is related to cell damage has not been elucidated. In the present study, we explored the correlation between the damage of chicken type II pneumocytes induced by APEC and the autoinducer-2 (AI-2) activity of APEC. The results showed that when chicken type II pneumocytes were co-cultured with 108 CFU/ml of APEC-O78 for 6 h, the release of LDH reached the highest level (192.5 ± 13.4 U/L) (P < 0.01), and the percentages of dead cells followed the same trend in trypan blue exclusion assay. In addition, the AI-2 activity of cell-free culture fluid (CF) reached the maximum value after 6 h co-culture with 108 CFU/ml of APEC-O78. At the same time, the mRNA expressions of eight virulence genes (papC, fimA, fimC, hlyE, ompA, luxS, pfs, and qseA) of 108 CFU/ml APEC-O78 were significantly increased compared with those of 107 CFU/ml, and the mRNA expressions of four virulence genes (hlyE, tsh, iss, and luxS) of 108 CFU/ml APEC-O78 were higher than those of 109 CFU/ml (p < 0.05) after incubation for 6 h. These results suggested that AI-2-mediated QS is involved in the cell damage induced by APEC-O78, indicating AI-2 may be one new potential target for preventing chicken colibacillosis.


Subject(s)
Alveolar Epithelial Cells/microbiology , Alveolar Epithelial Cells/physiology , Escherichia coli/pathogenicity , Homoserine/analogs & derivatives , Lactones/metabolism , Virulence Factors/metabolism , Animals , Cell Survival/drug effects , Cells, Cultured , Chickens , Coculture Techniques , Escherichia coli/physiology , Homoserine/metabolism , L-Lactate Dehydrogenase/analysis , Quorum Sensing , Staining and Labeling , Trypan Blue/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...