Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Small ; : e2401057, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587966

ABSTRACT

Oxygen evolution reaction (OER) is a widely employed half-electrode reaction in oxygen electrochemistry, in applications such as hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. Unfortunately, its slow kinetics limits the commercialization of such applications. It is therefore highly imperative to develop highly robust electrocatalysts with high activity, long-term durability, and low noble-metal contents. Previously intensive efforts have been made to introduce the advancements on developing non-precious transition metal electrocatalysts and their OER mechanisms. Electronic structure tuning is one of the most effective and interesting ways to boost OER activity and spin angular momentum is an intrinsic property of the electron. Therefore, modulation on the spin states and the magnetic properties of the electrocatalyst enables the changes on energy associated with interacting electron clouds with radical absorbance, affecting the OER activity and stability. Given that few review efforts have been made on this topic, in this review, the-state-of-the-art research progress on spin-dependent effects in OER will be briefed. Spin engineering strategies, such as strain, crystal surface engineering, crystal doping, etc., will be introduced. The related mechanism for spin manipulation to boost OER activity will also be discussed. Finally, the challenges and prospects for the development of spin catalysis are presented. This review aims to highlight the significance of spin engineering in breaking the bottleneck of electrocatalysis and promoting the practical application of high-efficiency electrocatalysts.

2.
Complement Ther Med ; 82: 103044, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38679147

ABSTRACT

OBJECTIVE: The purpose of this study was to summarize existing clinical studies through a systematic review to explore the efficacy of acupuncture in treating sleep disorders in PD patients. METHODS: According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we retrieved the papers through 30 April 2023 from eight databases. The experimental group was treated with acupuncture plus conventional therapy, while the control group was treated with conventional therapy alone or combined with sham acupuncture. The sleep quality was the primary outcome. A team of researchers meticulously performed literature screening, data extraction and risk of bias assessment following the Cochrane Handbook. A meta-analysis was synthesized using Review Manager Version 5.4 software if feasible. The quality of the evidence was assessed by the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) tool. RESULTS: A total of 973 papers were identified, with 15 papers involving 957 patients were included in this systematic review. The results showed that acupuncture interventions included manual acupuncture, electroacupuncture, moxibustion and bleeding, with 1-7 times every week implemented during 2-12 weeks. Acupuncture as an adjunct therapy compared to conventional therapy alone showed better effect in sleep quality and overall symptoms of PD. Risk of bias assessment showed deficiencies in blinding and allocation concealment. All included studies were synthesized in a meta-analysis, as the result of which, acupuncture improved PDSS scores(MD =16.57; 95% CI, 7.24-25.90; I2 = 97%) and effective rate for sleep disorders (OR = 5.91; 95% CI, 1.71-20.39; I2 = 54%); meanwhile, acupuncture reduced UPDRS scores(MD = -4.29; 95% CI, -6.54 - -2.03; I2 = 77%) and improved effective rate for PD (OR = 3.22; 95% CI, 1.81-5.72; I2 = 0%). The quality of evidence ranged from low to moderate by GRADE. CONCLUSION: This study provides initial evidence that acupuncture as an adjunct therapy might be associated with improvement of sleep disorders in PD. Due to the lack of high-quality studies, larger sample size studies with sham acupuncture groups should be conducted in future. REGISTRATION NUMBER: CRD42022364249 (PROSPERO).

3.
Mar Drugs ; 22(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38535441

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory bowel disease with unknown pathogenesis which has been gradually considered a public health challenge worldwide. Peptides derived from Rapana venosa have been shown to have an anti-inflammatory effect. In this study, peptide LLTRAGL derived from Rapana venosa was prepared by a solid phase synthesis technique. The protective effects of LLTRAGL were studied in a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced zebrafish colitis model. The underlying mechanisms of LLTRAGL were predicted and validated by transcriptome, real-time quantitative PCR assays and molecular docking. The results showed that LLTRAGL reduced the number of macrophages migrating to the intestine, enhanced the frequency and rate of intestinal peristalsis and improved intestinal inflammatory damage. Furthermore, transcriptome analysis indicated the key pathways (NOD-like receptor signal pathway and necroptosis pathway) that link the underlying protective effects of LLTRAGL's molecular mechanisms. In addition, the related genes in these pathways exhibited different expressions after TNBS treatment. Finally, molecular docking techniques further verified the RNA-sequencing results. In summary, LLTRAGL exerted protective effects in the model of TNBS-induced colitis zebrafish. Our findings provide valuable information for the future application of LLTRAGL in IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Perciformes , Snails , Animals , Zebrafish , Molecular Docking Simulation , Peptides
4.
Heliyon ; 10(3): e24662, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317888

ABSTRACT

Vaccination is the most cost-effective method for preventing various infectious diseases. Compared with conventional vaccines, new-generation vaccines, especially recombinant protein or synthetic peptide vaccines, are safer but less immunogenic than crude inactivated microbial vaccines. The immunogenicity of these vaccines can be enhanced using suitable adjuvants. This is the main reason why adjuvants are of great importance in vaccine development. Several novel human emulsion-based vaccine adjuvants (MF59, AS03) have been approved for clinical use. This paper reviews the research progress on emulsion-based adjuvants and focuses on their mechanism of action. An outlook can be provided for the development of emulsion-based vaccine adjuvants.

5.
Fish Shellfish Immunol ; 145: 109351, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171429

ABSTRACT

INTRODUCTION: Ulcerative colitis (UC) is an incurable and highly complex chronic inflammatory bowel disease (IBD) affecting millions of people worldwide. C-phycocyanin (C-PC) has been reported to possess outstanding anti-inflammatory activities and can effectively inhibit various inflammation-related diseases. Whether C-PC-derived bioactive peptides can inhibit intestinal inflammation is worth research and consideration. METHODS: The inhibition activities of three anti-neuroinflammatory peptides were evaluated using 2-4-6-trinitrobenzen sulfonic acid (TNBS)-induced zebrafish colitis model. Subsequently, the abilities of peptides to promote gastrointestinal motility were also examined. The changes in the intestinal pathological symptoms and ultrastructure of intestinal, reactive oxygen species (ROS) levels, and antioxidant enzymes were then determined after co-treatment with peptides and TNBS. Transcriptome analysis was used to investigate the underlying ameliorating TNBS-induced colitis effects molecular mechanisms of better activity peptide. Furthermore, quantitative reverse-transcription polymerase chain reaction and molecular docking techniques verified the mRNA sequencing results. RESULTS: Three peptides, MHLWAAK, MAQAAEYYR and MDYYFEER, which significantly inhibit macrophage migration, were synthesized. The results showed that these peptides could effectively alleviate the inflammatory responses in the TNBS-induced zebrafish model of colitis. In addition, co-treatment with TNBS and C-PC peptides could decrease ROS production and increase antioxidant enzyme activities in zebrafish larvae. Moreover, MHLWAAK had the most significantly therapeutic effects on colitis in zebrafish. The transcriptome analysis suggests that the effect of MHLWAAK on TNBS-induced colitis may be associated with the modulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinase (MAPK) signaling pathway associated genes. In addition, molecular docking was conducted to study the prospective interaction between peptides and the key proteins that streamline the Nrf2 and MAPK signaling pathways. IL-6, JNK3, TNF-α, KEAP1-NRF2 complex and MAPK may be the core targets of MHLWAAK in treating colitis. CONCLUSION: The results suggested that the three C-PC-derived peptides could ameliorate TNBS-induced colitis in zebrafish, and these peptides might be a promising therapeutic candidate for UC treatment.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Zebrafish/metabolism , NF-E2-Related Factor 2/metabolism , Phycocyanin/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Molecular Docking Simulation , Prospective Studies , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , MAP Kinase Signaling System , Inflammation , Disease Models, Animal
6.
Inorg Chem ; 63(4): 1947-1953, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38215462

ABSTRACT

Oxygen evolution reaction (OER) plays an important role in energy conversion processes such as water electrolysis and metal-air batteries. At present, finding a high-performance and low-cost catalyst for the OER in acidic media remains a great challenge. It is therefore important to develop efficient, robust, and inexpensive electrocatalysts by replacing noble metal-based catalysts with transition-metal electrocatalysts. Herein, we propose a facile method for incorporating Ce-metal single atoms into Co3O4 nanosheets to boost their OER activity and stability. Owing to the enhanced charge transfer and improved electronic structure resulting from Ce incorporation, the obtained Ce single-atom-doped Co3O4 nanosheet exhibits greatly enhanced OER performance. It achieves a 10 mA cm-2 current density under a low overpotential of 348 mV in a 0.5 M H2SO4 solution with excellent stability, outperforming the state-of-the-art non-noble electrocatalysts recently reported in acid.

7.
J Colloid Interface Sci ; 658: 450-458, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38118191

ABSTRACT

Covalent organic frameworks (COFs) have a broad prospect to be used as a photocatalytic platform to convert solar energy into valuable chemicals due to their tunable structures and rich active catalytic sites. However, constructing COFs with tuned sp2-carbon donor-acceptor moiety remains an enormous challenge. Herein, we synthesized two new fully π-conjugated cyano-ethylene-linked COFs containing benzotrithiophene as functional group by Knoevenagel polycondensation reaction. The accetpor 2,2'-bipyridine unit in BTT-BpyDAN-COF skeleton favored the formation of a intermolecular specific electron transport pathway with the donor benzotrithiophene, and thereby promoted charge separation and transfer efficiency. Specifically, a donor-acceptor (D-A) type BTT-BpyDAN-COF exhibited high hydrogen evolution rate of 10.1 mmol g-1h-1 and an excellent apparent quantum efficiency of 4.83 % under visible light irradiation.

8.
Small ; 20(21): e2309363, 2024 May.
Article in English | MEDLINE | ID: mdl-38098307

ABSTRACT

The challenge of the practical application of a water electrolyzer system lies in the development of low-manufacturing cost, highly active, and stable electrocatalysts to replace the noble metal ones, in order to enable environmentally friendly hydrogen production on a large scale. Herein, a facile method is proposed for boosting the performance of Co3O4 through the incorporation of large-sized single atoms. Due to the larger ionic radius of rare earth metals than that of Co, the incorporation elongates the bond length of Co─O, resulting in the narrowed d-p band centers and the high spin configuration, which is favorable for the interaction and charge transfer with absorbent (*OH). As a result, the Ce-incorporated Co3O4 with the longest Co─O bond length exhibits the best oxygen evolution reaction (OER) performance, specifically, the turnover frequency is over 17 times higher than that of pristine Co3O4 nanosheet under an overpotential of 400 mV. Powered by a commercial Si solar cell, a two-electrode solar water-splitting device combining Ce-incorporated Co3O4 and Pt delivers a solar-to-hydrogen conversion efficiency of 13.53%. The strategy could provide a new insight for improving the performance of OER electrocatalysts in acid toward practical applications.

9.
Gut Microbes ; 15(2): 2284247, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38057970

ABSTRACT

The occurrence and development of Parkinson's disease (PD) have been demonstrated to be related to gut dysbiosis, however, the impact of fecal microbiota transplantation (FMT) on microbiota engraftment in PD patients is uncertain. We performed a randomized, placebo-controlled trial at the Department of Neurology, Army Medical University Southwest Hospital in China (ChiCTR1900021405) from February 2019 to December 2019. Fifty-six participants with mild to moderate PD (Hoehn-Yahr stage 1-3) were randomly assigned to the FMT and placebo group, 27 patients in the FMT group and 27 in the placebo group completed the whole trial. During the follow-up, no severe adverse effect was observed, and patients with FMT treatment showed significant improvement in PD-related autonomic symptoms compared with the placebo group at the end of this trial (MDS-UPDRS total score, group×time effect, B = -6.56 [-12.98, -0.13], P < 0.05). Additionally, FMT improved gastrointestinal disorders and a marked increase in the complexity of the microecological system in patients. This study demonstrated that FMT through oral administration is clinically feasible and has the potential to improve the effectiveness of current medications in the clinical symptoms of PD patients.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Humans , Fecal Microbiota Transplantation/methods , Parkinson Disease/therapy , Dysbiosis/therapy , Dysbiosis/etiology , China , Treatment Outcome , Feces
10.
Adv Mater ; 35(49): e2308060, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37845788

ABSTRACT

Oxygen electrochemistry plays a key role in renewable energy technologies, such as fuel cells and electrolyzers, but its slow kinetics limits the performance and the commercialization of such devices. Here, a strained MnO2 nanosheet induced by Ir incorporation is developed with optimized electronic structure by a simple hydrothermal method. With the incorporation of Ir, the strain induces elongated Mn─O bond length, and thereby tuning the electronic structure to favor the oxygen evolution reaction (OER) performance. The obtained catalyst exhibits an excellent mass activity of 5681 A g-1 at an overpotential of 300 mV in 0.5 m H2 SO4 , and reaches 50 and 100 mA cm-2 at overpotentials of only 240 and 277 mV, respectively. The catalyst is also stable even at 300 mA cm-2 in 0.5 m H2 SO4 . Using the nanosheet as the OER catalyst and the Pt/C as the hydrogen evolution reaction catalyst, a two-electrode electrolyzer achieves 10 mA cm-2 with only a cell voltage of 1.453 V for overall water splitting in 0.5 m H2 SO4 . This strategy enables the material with high feasibility for practical applications on hydrogen production.

11.
Cancers (Basel) ; 15(14)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37509218

ABSTRACT

The fecal virome has been reported to be associated with CRC. However, little is known about the mucosal virome signature in CRC. This study aimed to determine the viral community within CRC tissues and their contributions to colorectal carcinogenesis. Colonic mucosal biopsies were harvested from patients with CRC (biopsies of both neoplasia and adjacent normal tissue (CRC-A)) and healthy controls (HC). The shot-gun metagenomic sequencing of virus-like particles (VLPs) was performed on the biopsies. Viral community, functional pathways, and their correlations to clinical data were analyzed. Fluorescence in situ hybridizations (FISH) for the localization of viruses in the intestine was performed, as well as quantitative PCR for the detection of Torque teno virus load in human mucosal VLP DNA. A greater number and proportion of core species were found in CRC tissues than in CRC-A and HC tissues. The diversity of the mucosal virome in CRC tissues was significantly increased compared to that in HC and CRC-A tissues. The mucosal virome signature of CRC tissues were significantly different from those of HC and CRC-A tissues at the species level. The abundances of eukaryotic viruses from the Anelloviridae family and its sub-species Torque teno virus (TTV) were significantly higher in CRC patients than in HC. Furthermore, increased levels of TTV in the intestinal lamina propria were found in the CRC group. Multiple viral functions of TTV associated with carcinogenesis were enriched in CRC tissues. We revealed for the first time that the mucosal virobiota signature of CRC is characterized by a higher diversity and more eukaryotic viruses. The enrichment of TTV species in CRC tissues suggests that they may play an oncogenic role in CRC. Targeting eukaryotic viruses in the gut may provide novel strategies for the prevention and treatment of CRC.

12.
Front Oncol ; 13: 1170923, 2023.
Article in English | MEDLINE | ID: mdl-37434986

ABSTRACT

Background: Advanced hepatocellular carcinoma (HCC) is characterized as symptomatic tumors [performance status (PS) score of 1-2], vascular invasion and extrahepatic spread, but patients with PS1 alone may be eliminated from this stage. Although liver resection is used for liver-confined HCC, its role in patients with PS1 alone remains controversial. Therefore, we aimed to explore its application in such patients and identify potential candidates. Methods: Eligible liver-confined HCC patients undergoing liver resection were retrospectively screened in 15 Chinese tertiary hospitals, with limited tumor burden, liver function and PS scores. Cox-regression survival analysis was used to investigate the prognostic factors and develop a risk-scoring system, according to which patients were substratified using fitting curves and the predictive values of PS were explored in each stratification. Results: From January 2010 to October 2021, 1535 consecutive patients were selected. In the whole cohort, PS, AFP, tumor size and albumin were correlated with survival (adjusted P<0.05), based on which risk scores of every patient were calculated and ranged from 0 to 18. Fitting curve analysis demonstrated that the prognostic abilities of PS varied with risk scores and that the patients should be divided into three risk stratifications. Importantly, in the low-risk stratification, PS lost its prognostic value, and patients with PS1 alone achieved a satisfactory 5-year survival rate of 78.0%, which was comparable with that PS0 patients (84.6%). Conclusion: Selected patients with PS1 alone and an ideal baseline condition may benefit from liver resection and may migrate forward to BCLC stage A.

13.
Front Immunol ; 14: 1199173, 2023.
Article in English | MEDLINE | ID: mdl-37457707

ABSTRACT

The immune system provides full protection for the body by specifically identifying 'self' and removing 'others'; thus protecting the body from diseases. The immune system includes innate immunity and adaptive immunity, which jointly coordinate the antitumor immune response. T cells, natural killer (NK) cells and tumor-associated macrophages (TAMs) are the main tumor-killing immune cells active in three antitumor immune cycle. Cancer immunotherapy focusses on activating and strengthening immune response or eliminating suppression from tumor cells in each step of the cancer-immunity cycle; thus, it strengthens the body's immunity against tumors. In this review, the antitumor immune cycles of T cells, natural killer (NK) cells and tumor-associated macrophages (TAMs) are discussed. Co-stimulatory and co-inhibitory molecules in the three activity cycles and the development of drugs and delivery systems targeting these molecules are emphasized, and the current state of the art of drug delivery systems for cancer immunotherapy are summarized.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Tumor-Associated Macrophages/pathology , Killer Cells, Natural , Immunotherapy , Drug Delivery Systems
15.
Food Funct ; 14(13): 6157-6171, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37337786

ABSTRACT

Previous studies have shown that peptides isolated from C-phycocyanin (C-PC) possess various functions including antioxidant and anticancer activities. However, there is little research on C-PC peptides applied for the neuroprotective effect against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) model. In this study, twelve novel peptides from C-PC were isolated, purified and identified, and the anti-PD effect of the synthesized peptides was evaluated in a zebrafish PD model. As a result, three of these peptides (MAAAHR, MPQPPAK, and MTAAAR) significantly reversed the loss of dopamine neurons and cerebral vessels, and reduced the locomotor impairment in PD zebrafish. In addition, three novel peptides could inhibit the MPTP-induced decrease of antioxidant enzymes (SOD, CAT, and GSH-Px) and increase the ROS and protein carbonylation content. In addition, they can also alleviate apoptosis of brain regions and acetylcholinesterase (AChE) activity in zebrafish. Further studies elucidated the potential molecular mechanism of peptides' anti-PD effects in the larvae. The results showed that C-PC peptides could modulate multiple genes associated with oxidative stress, autophagy and apoptosis signaling pathways, and thereby alleviate the occurrence of PD symptoms. Overall, our results highlight the neuroprotective effects of three novel peptides and provide valuable mechanistic insights and a promising drug target for the treatment of PD.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Mice , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Zebrafish/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Phycocyanin/pharmacology , Phycocyanin/therapeutic use , Antioxidants/metabolism , Acetylcholinesterase , Peptides/pharmacology , Peptides/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal , Mice, Inbred C57BL
16.
Chem Commun (Camb) ; 59(42): 6387-6390, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37157983

ABSTRACT

In this study, we synthesized novel bipyridine-based, sp2-carbon-linked COFs with the incorporation of ultra-small metal nanoparticles for enhanced photocatalytic tetracycline hydrochloride degradation and hydrogen evolution. The obtained photocatalyst exhibits strong visible light absorption and modulated electronic structure, owing to charge transfer between the metal and COFs, resulting in tuned proton absorption/desorption energy. As a result, the Pd-COFs exhibit remarkable photocatalytic activities for both tetracycline hydrochloride removal and hydrogen evolution. Specifically, the rate constant of photocatalytic tetracycline hydrochloride removal reaches 0.03406 min-1 with excellent stability and the photocatalytic hydrogen evolution rate reaches 98.17 mmol g-1 h-1, outperforming the-state-of-the-art photocatalysts with noble Pt loading.

17.
Aging Dis ; 14(4): 1425-1440, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37163424

ABSTRACT

The senescence of mesenchymal stem cells (MSCs) impairs their regenerative capacity to maintain tissue homeostasis. Numerous studies are focusing on the interventions and mechanisms to attenuate the senescence of MSCs. C-phycocyanin (C-PC) is reported to have multiple functions such as antitumor, antioxidation, anti-inflammation and anti-aging roles, but there is little research about the effects of C-PC on the senescence of MSCs. Here we investigated the roles and mechanism of C-PC on MSCs senescence. In vitro results showed that C-PC could reduce senescence, enhance proliferation, promote the adipogenic and osteogenic differentiation in senescent MSCs induced by oxidative stress. In vivo D-Galactose (D-Gal) induced rats aging models showed C-PC also increased the viability and differentiation of intrinsic senescent bone marrow derived MSCs (BMSCs). Furthermore, C-PC also decreased the levels of oxidative stress markers ROS or MDA, elevated the SOD activity, and increased the anti-inflammatory factors. Proteomic chip analysis showed that C-PC interacted with ZDHHC5, and their interaction was verified by pull down assay. Overexpression of ZDHHC5 aggravated the senescence of MSCs and greatly lessened the beneficial effects of C-PC on senescence. In addition, we found ZDHHC5 regulated autophagy by altering LC3, Beclin1 and PI3K/AKT/mTOR pathway. In summary, our data indicated that C-PC ameliorates the senescence of MSCs through zinc finger Asp-His-His-Cys (DHHC) domain-containing protein 5 (ZDHHC5) mediated autophagy via PI3K/AKT/mTOR pathway. The present study uncovered the key role of autophagy in MSCs senescence and PI3K/AKT/mTOR pathway may be a potential target for anti-senescence studies of MSCs.

18.
Chem Commun (Camb) ; 59(48): 7302-7320, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37221919

ABSTRACT

The excessive use of traditional fossil fuels has led to energy and environmental pollution problems. Solar-driven hydrogen generation has attracted much attention in recent years owing to its environmental friendliness and economic feasibility. So far, a series of photocatalysts have been advanced. Unfortunately, these photocatalysts face some issues including poor sunlight harvesting ability, weak photo-corrosion resistance, broad band gap, bad stability, inferior hydrogen evolution rate and so on. It just so happens that COFs have emerged to provide an opportunity for settling these issues. Covalent organic frameworks (COFs), a novel family of porous materials with regular porosity and tunable physicochemical structures, have been extensively explored as photocatalysts for hydrogen production. Moreover, their photocatalytic activities are highly structurally dependent. In this review, we mainly focus on the linkage chemistry and disparate strategies for boosting COF-based photocatalytic hydrogen generation performance in detail. The prospects and obstacles confronted in the development of COF-based photocatalysts and proposals to settle dilemmas are also discussed.

19.
Front Cell Dev Biol ; 11: 1141331, 2023.
Article in English | MEDLINE | ID: mdl-36936694

ABSTRACT

The annexin A (ANXA) protein family is a well-known tissue-specific multigene family that encodes Ca2+ phospholipid-binding proteins. A considerable amount of literature is available on the abnormal expression of ANXA proteins in various malignant diseases, including cancer, atherosclerosis and diabetes. As critical regulatory molecules in cancer, ANXA proteins play an essential role in cancer progression, proliferation, invasion and metastasis. Recent studies about their structure, biological properties and functions in different types of cancers are briefly summarised in this review. We further discuss the use of ANXA as new class of targets in the clinical diagnosis and treatment of cancer.

20.
J Colloid Interface Sci ; 636: 470-479, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36641822

ABSTRACT

Photocatalysis, such as solar-driven photodegradation and energy conversion, has attracted great attention, given that it provides a promising solution for alleviating the energy shortage and environmental contamination issues. However, the insufficient light absorption and charge separation/transport efficiency restrict the solar conversion efficiency. It has been proved that oxygen vacancies (Ov) can improve the photocatalytic activity by enhancing the light absorption. But in this study, we show that oxygen vacancies hinder the charge separation/transfer in Ba2Bi1.4Ta0.6O6. The incorporation of S further pushes the light absorption edge up to 1170 nm. Therefore, the S/Ov-Ba2Bi1.4Ta0.6O6 sample can absorb not only the full range of visible light but also part of near-infrared light. More importantly, it mitigates the drawback of oxygen vacancies, improving the charge separation/transport by 1.65 times. As a result, The S/Ov-Ba2Bi1.4Ta0.6O6 nanowires manifest 4.41 times and over 100 times higher photocatalytic activity for tetracycline hydrochloride degradation and hydrogen production, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...