Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Appl Environ Microbiol ; 90(5): e0041824, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38624198

ABSTRACT

Cyclic di-GMP (c-di-GMP) is a crucial signaling molecule found extensively in bacteria, involved in the regulation of various physiological and biochemical processes such as biofilm formation, motility, and pathogenicity through binding to downstream receptors. However, the structural dissimilarity of c-di-GMP receptor proteins has hindered the discovery of many such proteins. In this study, we identified LspE, a homologous protein of the type II secretion system (T2SS) ATPase GspE in Lysobacter enzymogenes, as a receptor protein for c-di-GMP. We identified the more conservative c-di-GMP binding amino acid residues as K358 and T359, which differ from the previous reports, indicating that GspE proteins may represent a class of c-di-GMP receptor proteins. Additionally, we found that LspE in L. enzymogenes also possesses a novel role in regulating the production of the antifungal antibiotic HSAF. Further investigations revealed the critical involvement of both ATPase activity and c-di-GMP binding in LspE-mediated regulation of HSAF (Heat-Stable Antifungal Factor) production, with c-di-GMP binding having no impact on LspE's ATPase activity. This suggests that the control of HSAF production by LspE encompasses two distinct processes: c-di-GMP binding and the inherent ATPase activity of LspE. Overall, our study unraveled a new function for the conventional protein GspE of the T2SS as a c-di-GMP receptor protein and shed light on its role in regulating antibiotic production.IMPORTANCEThe c-di-GMP signaling pathway in bacteria is highly intricate. The identification and functional characterization of novel receptor proteins have posed a significant challenge in c-di-GMP research. The type II secretion system (T2SS) is a well-studied secretion system in bacteria. In this study, our findings revealed the ATPase GspE protein of the T2SS as a class of c-di-GMP receptor protein. Notably, we discovered its novel function in regulating the production of antifungal antibiotic HSAF in Lysobacter enzymogenes. Given that GspE may be a conserved c-di-GMP receptor protein, it is worthwhile for researchers to reevaluate its functional roles and mechanisms across diverse bacterial species.


Subject(s)
Adenosine Triphosphatases , Bacterial Proteins , Cyclic GMP , Lysobacter , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Lysobacter/metabolism , Lysobacter/genetics , Lysobacter/enzymology , Type II Secretion Systems/metabolism , Type II Secretion Systems/genetics , Anti-Bacterial Agents/metabolism , Gene Expression Regulation, Bacterial , Antifungal Agents/metabolism
2.
Microbiol Spectr ; 11(3): e0487222, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37166326

ABSTRACT

Myxin, a di-N-oxide phenazine isolated from the soil bacterium Lysobacter antibioticus, exhibits potent activity against various microorganisms and has the potential to be developed as an agrochemical. Antibiotic-producing microorganisms have developed self-resistance mechanisms to protect themselves from autotoxicity. Antibiotic efflux is vital for such protection. Recently, we identified a resistance-nodulation-division (RND) efflux pump, LexABC, involved in self-resistance against myxin in L. antibioticus. Expression of its genes, lexABC, was induced by myxin and was positively regulated by the LysR family transcriptional regulator LexR. The molecular mechanisms, however, have not been clear. Here, LexR was found to bind to the lexABC promoter region to directly regulate expression. Moreover, myxin enhanced this binding. Molecular docking and surface plasmon resonance analysis showed that myxin bound LexR with valine and lysine residues at positions 146 (V146) and 195 (K195), respectively. Furthermore, mutation of K195 in vivo led to downregulation of the gene lexA. These results indicated that LexR sensed and bound with myxin, thereby directly activating the expression of the LexABC efflux pump and increasing L. antibioticus resistance against myxin. IMPORTANCE Antibiotic-producing bacteria exhibit various sophisticated mechanisms for self-protection against their own secondary metabolites. RND efflux pumps that eliminate antibiotics from cells are ubiquitous in Gram-negative bacteria. Myxin is a heterocyclic N-oxide phenazine with potent antimicrobial and antitumor activities produced by the soil bacterium L. antibioticus. The RND pump LexABC contributes to the self-resistance of L. antibioticus against myxin. Herein, we report a mechanism involving the LysR family regulator LexR that binds to myxin and directly activates the LexABC pump. Further study on self-resistance mechanisms could help the investigation of strategies to deal with increasing bacterial antibiotic resistance and enable the discovery of novel natural products with resistance genes as selective markers.


Subject(s)
Bacterial Proteins , Oxides , Bacterial Proteins/metabolism , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Phenazines/pharmacology
3.
Appl Environ Microbiol ; 88(2): e0189521, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34757823

ABSTRACT

Cyclic dimeric GMP (c-di-GMP) is a universal second messenger in bacteria. A large number of c-di-GMP-related diguanylate cyclases (DGCs), phosphodiesterases (PDEs), and effectors are responsible for the complexity and dynamics of c-di-GMP signaling. Some of these components employ various methods to avoid undesired cross talk to maintain signaling specificity. The synthesis of the antibiotic HSAF (heat-stable antifungal factor) in Lysobacter enzymogenes is regulated by a specific c-di-GMP signaling pathway that includes a PDE, LchP, and a c-di-GMP effector, Clp (also a transcriptional regulator). In the present study, from among 19 DGCs, we identified a diguanylate cyclase, LchD, that participates in this pathway. Subsequent investigation indicates that LchD and LchP physically interact and that the catalytic center of LchD is required for both the formation of the LchD-LchP complex and HSAF production. All the detected phenotypes support that LchD and LchP display local c-di-GMP signaling to regulate HSAF biosynthesis. Although direct evidence is lacking, our investigation, which shows that the interaction between a DGC and a PDE maintains the specificity of c-di-GMP signaling, suggests the possibility of the existence of local c-di-GMP pools in bacteria. IMPORTANCE Cyclic dimeric GMP (c-di-GMP) is a universal second messenger in bacteria. The signaling of c-di-GMP is complex and dynamic, and it is mediated by a large number of components, including c-di-GMP synthases (diguanylate cyclases [DGCs]), c-di-GMP-degrading enzymes (phosphodiesterases [PDEs]), and c-di-GMP effectors. These components deploy various methods to avoid undesired cross talk to maintain signaling specificity. In the present study, we identified a DGC that interacted with a PDE to specifically regulate antibiotic biosynthesis in L. enzymogenes. We provide direct evidence to show that the DGC and PDE form a complex and also indirect evidence to argue that they may balance a local c-di-GMP pool to control antibiotic production. These results represent an important finding regarding the mechanism of a DGC and PDE pair to control the expression of specific c-di-GMP signaling pathways.


Subject(s)
Escherichia coli Proteins , Phosphoric Diester Hydrolases , Anti-Bacterial Agents , Bacterial Proteins/genetics , Cyclic GMP/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Lysobacter , Phosphoric Diester Hydrolases/metabolism , Phosphorus-Oxygen Lyases/genetics
4.
Commun Biol ; 4(1): 1131, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561536

ABSTRACT

Soil bacteria often harbour various toxins to against eukaryotic or prokaryotic. Diffusible signal factors (DSFs) represent a unique group of quorum sensing (QS) chemicals that modulate interspecies competition in bacteria that do not produce antibiotic-like molecules. However, the molecular mechanism by which DSF-mediated QS systems regulate antibiotic production for interspecies competition remains largely unknown in soil biocontrol bacteria. In this study, we find that the necessary QS system component protein RpfG from Lysobacter, in addition to being a cyclic dimeric GMP (c-di-GMP) phosphodiesterase (PDE), regulates the biosynthesis of an antifungal factor (heat-stable antifungal factor, HSAF), which does not appear to depend on the enzymatic activity. Interestingly, we show that RpfG interacts with three hybrid two-component system (HyTCS) proteins, HtsH1, HtsH2, and HtsH3, to regulate HSAF production in Lysobacter. In vitro studies show that each of these proteins interacted with RpfG, which reduced the PDE activity of RpfG. Finally, we show that the cytoplasmic proportions of these proteins depended on their phosphorylation activity and binding to the promoter controlling the genes implicated in HSAF synthesis. These findings reveal a previously uncharacterized mechanism of DSF signalling in antibiotic production in soil bacteria.


Subject(s)
Antifungal Agents/metabolism , Cyclic GMP/analogs & derivatives , Lysobacter/physiology , Quorum Sensing/physiology , Cyclic GMP/metabolism , Lysobacter/metabolism , Soil Microbiology
5.
Front Microbiol ; 12: 618513, 2021.
Article in English | MEDLINE | ID: mdl-33679640

ABSTRACT

Antibiotic-producing microorganisms have developed several self-resistance mechanisms to protect them from autotoxicity. Transporters belonging to the resistance- nodulation-division (RND) superfamily commonly confer multidrug resistance in Gram-negative bacteria. Phenazines are heterocyclic, nitrogen-containing and redox-active compounds that exhibit diverse activities. We previously identified six phenazines from Lysobacter antibioticus OH13, a soil bacterium emerging as a potential biocontrol agent. Among these phenazines, myxin, a di-N-oxide phenazine, exhibited potent activity against a variety of microorganisms. In this study, we identified a novel RND efflux pump gene cluster, designated lexABC, which is located far away in the genome from the myxin biosynthesis gene cluster. We found a putative LysR-type transcriptional regulator encoding gene lexR, which was adjacent to lexABC. Deletion of lexABC or lexR gene resulted in significant increasing susceptibility of strains to myxin and loss of myxin production. The results demonstrated that LexABC pump conferred resistance against myxin. The myxin produced at lower concentrations in these mutants was derivatized by deoxidation and O-methylation. Furthermore, we found that the abolishment of myxin with deletion of LaPhzB, which is an essential gene in myxin biosynthesis, resulted in significant downregulation of the lexABC. However, exogenous supplementation with myxin to LaPhzB mutant could efficiently induce the expression of lexABC genes. Moreover, lexR mutation also led to decreased expression of lexABC, which indicates that LexR potentially positively modulated the expression of lexABC. Our findings reveal a resistance mechanism against myxin of L. antibioticus, which coordinates regulatory pathways to protect itself from autotoxicity.

6.
Microbiol Res ; 242: 126624, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33189074

ABSTRACT

Colletotrichum fructicola, is an important fungal pathogen that has been reported to cause pear (Pyrus) anthracnose in China, resulting in substantial economic losses due to severe defoliation and decreased fruit quality and yield. In the search for novel strategies to control pear anthracnose, Lysobacter strains have drawn a great deal of attention due to their high-level production of extracellular enzymes and bioactive metabolites. In the present study, we compared four Lysobacter strains including Lysobacter enzymogenes OH11, Lysobacter antibioticus OH13, Lysobacter gummosus OH17 and Lysobacter brunescens OH23 with respect to their characteristics and activity against pear anthracnose caused by C. fructicola. The results showed that the evaluated Lysobacter species presented various colony morphologies when cultured on different media and were proficient in producing protease, chitinase, cellulase and glucanase, with L. enzymogenes OH11 showing typical twitching motility. L. enzymogenes OH11 and L. gummosus OH17 showed potent activity against the tested fungi and oomycetes. L. gummosus OH17 produced HSAF (heat-stable antifungal factor) which was demonstrated to be a major antifungal factor in L. enzymogenes OH11 and C3. Furthermore, L. antibioticus OH13 and L. brunescens OH23 exhibited strong antibacterial activity, especially against Xanthomonas species. Cultures of L. enzymogenes OH11 protected pear against anthracnose caused by C. fructicola, and the in vivo results indicated that treatment with an L. enzymogenes OH11 culture could decrease the diameter of lesions in pears by 35 % and reduce the severity of rot symptoms compared to that observed in the control. In the present study, we systemically compared four Lysobacter strains and demonstrated that they have strong antagonistic activity against a range of pathogens, demonstrating their promise in the development of biological control agents.


Subject(s)
Biological Control Agents/metabolism , Lysobacter/classification , Lysobacter/isolation & purification , Lysobacter/metabolism , Antifungal Agents/metabolism , Chitinases/metabolism , Colletotrichum , Gene Expression Regulation, Bacterial , Lysobacter/genetics , Microbial Sensitivity Tests , Plant Diseases , Pyrus
7.
Curr Microbiol ; 77(6): 1006-1015, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32002625

ABSTRACT

Heat-stable antifungal factor (HSAF) is a broad-spectrum antifungal antibiotic produced by the biological control agent, Lysobacter enzymogenes. In our earlier works, we have applied HSAF to effectively control wheat and pear fungal disease. However, a major bottleneck in its practical application is the low HSAF production level; therefore, boosting its production is essential for its wide application. In the past, we find that c-di-GMP, a universal bacterial second messenger, is inhibitory to HSAF production. In this work, we further identified eight active diguanylate cyclases (DGCs) responsible for c-di-GMP synthesis in Lysobacter enzymogenes via both bioinformatics and genetic analyses. We generated a strain lacking seven active DGC genes and found that this DGC-modified strain, OH11LC, produced a higher HSAF amount in a c-di-GMP concentration-dependent manner. Subsequently, by employing OH11LC as the host fermentation strain, we could even produce a much higher HSAF amount (> 200-fold). After improving the HSAF production, we further developed a technique of seed coating method with HSAF, which turned out to be effective in fighting against the maize seed-borne filamentous pathogen, Pythium gramineacola. Overall, via combining strain modification and fermentation optimization, we demonstrated a good example of translating fundamental knowledge of bacterial c-di-GMP signaling into biological control application in which we relieved the inhibitory effect of c-di-GMP on HSAF biosynthesis by deleting a bunch of potentially active L. enzymogenes DGC genes to improve HSAF yield and to expand its usage in antifungal seed coating.


Subject(s)
Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Escherichia coli Proteins/genetics , Lysobacter/metabolism , Phosphorus-Oxygen Lyases/genetics , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Escherichia coli Proteins/metabolism , Fermentation , Gene Knockout Techniques , Lysobacter/genetics , Phosphorus-Oxygen Lyases/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Pythium/drug effects , Seeds/microbiology , Zea mays/microbiology
8.
Bioresour Technol ; 273: 196-202, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30447620

ABSTRACT

Lysobacter enzymogenes OH11 is currently considered to be a novel biocontrol agent for various plant fungi diseases. At present, only heat-stable antifungal factor (HSAF) has been isolated and identified in culture, although other active compounds also showed antifungal activity. In the present study, a novel active compound, alteramide B (ATB), which exhibits broad-spectrum antagonistic activity against phytopathogenic fungi and oomycetes, was isolated. The genes responsible for ATB biosynthesis were also determined. In addition, a strain producing ATB with minimal HSAF production was successfully generated by redirecting metabolic flux, namely L. enzymogenes OH57. Furthermore, ATB production increased to 893.32 ±â€¯15.57 mg/L through medium optimization and precursor supply strategy, which was 24.36-fold higher than that of 10% tryptic soy broth (36.67 ±â€¯1.63 mg/L). Taken together, this study indicates ATB has great development value as a biopesticide because of its bioactivity and high production.


Subject(s)
Antifungal Agents/metabolism , Lactams, Macrocyclic/metabolism , Lysobacter/metabolism , Antifungal Agents/chemistry , Lactams, Macrocyclic/chemistry
9.
BMC Biotechnol ; 18(1): 69, 2018 10 24.
Article in English | MEDLINE | ID: mdl-30355310

ABSTRACT

BACKGROUND: Heat-stable antifungal factor (HSAF) is a newly identified broad-spectrum antifungal antibiotic from the biocontrol agent Lysobacter enzymogenes and is regarded as a potential biological pesticide, due to its novel mode of action. However, the production level of HSAF is quite low, and little research has reported on the fermentation process involved, representing huge obstacles for large-scale industrial production. RESULTS: Medium capacity, culture temperature, and fermentation time were identified as the most significant factors affecting the production of HSAF and employed for further optimization through statistical methods. Based on the analysis of kinetic parameters at different temperatures, a novel two-stage temperature control strategy was developed to improve HSAF production, in which the temperature was increased to 32 °C during the first 12 h and then switched to 26 °C until the end of fermentation. Using this strategy, the maximum HSAF production reached 440.26 ± 16.14 mg L- 1, increased by 9.93% than that of the best results from single-temperature fermentation. Moreover, the fermentation time was shortened from 58 h to 54 h, resulting in the enhancement of HSAF productivity (17.95%) and yield (9.93%). CONCLUSIONS: This study provides a simple and efficient method for producing HSAF that could be feasibly applied to the industrial-scale production of HSAF.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/metabolism , Industrial Microbiology/methods , Lysobacter/metabolism , Culture Media/chemistry , Culture Media/metabolism , Fermentation , Industrial Microbiology/instrumentation , Kinetics , Lysobacter/chemistry , Lysobacter/genetics , Temperature
10.
Nucleic Acids Res ; 46(18): 9276-9288, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30202891

ABSTRACT

Enzymes controlling intracellular second messengers in bacteria, such as c-di-GMP, often affect some but not other targets. How such specificity is achieved is understood only partially. Here, we present a novel mechanism that enables specific c-di-GMP-dependent inhibition of the antifungal antibiotic production. Expression of the biosynthesis operon for Heat-Stable Antifungal Factor, HSAF, in Lysobacter enzymogenes occurs when the transcription activator Clp binds to two upstream sites. At high c-di-GMP levels, Clp binding to the lower-affinity site is compromised, which is sufficient to decrease gene expression. We identified a weak c-di-GMP phosphodiesterase, LchP, that plays a disproportionately high role in HSAF synthesis due to its ability to bind Clp. Further, Clp binding stimulates phosphodiesterase activity of LchP. An observation of a signaling complex formed by a c-di-GMP phosphodiesterase and a c-di-GMP-binding transcription factor lends support to the emerging paradigm that such signaling complexes are common in bacteria, and that bacteria and eukaryotes employ similar solutions to the specificity problem in second messenger-based signaling systems.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Cyclic GMP/analogs & derivatives , Lysobacter/metabolism , Signal Transduction , Antifungal Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic GMP/metabolism , Gene Expression Regulation, Bacterial , Lysobacter/genetics , Models, Genetic , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Protein Binding , Protein Interaction Maps/genetics
11.
Curr Microbiol ; 74(5): 566-574, 2017 May.
Article in English | MEDLINE | ID: mdl-28258296

ABSTRACT

Lysobacter enzymogenes (L. enzymogenes) is an agriculturally important Gram-negative bacterium that employs T4P (type IV pili)-driven twitching motility to exhibit its antifungal function. Yet, it is still unclear how this bacterium regulates its twitching motility. Here, by using strain OH11 as the working model organism, we showed that a hybrid two-component system ChpA acts as a positive regulator in controlling twitching motility in L. enzymogenes. ChpA is a hybrid TCS (two-component transduction system) contains 7 domains including those for auto-phosphorylation and phosphate group transfer, as well as a phosphate receiver (REC) domain. Mutation of chpA completely abolished the wild-type twitching motility, as evidenced by the absence of mobile cells at the margin of the mutant colonies. Further studies of domain-deletion and phenotypic characterization reveal that domains responsible for phosphorylation and phosphotransfer, but not the REC domain, were indispensable for ChpA in regulating twitching motility. Transcriptome analyses of the chpA knockout strain indicated that ChpA was extensively involved in controlling expression of a wide variety of genes (totaling 243). The products of these differentially expressed genes were involved in multiple physiological and biological functions in L. enzymogenes. Thus, we have not only identified a new regulator controlling twitching motility in L. enzymogenes, but also provided the first report demonstrating the broad impact of the conserved ChpA in gene regulation in Gram-negative bacteria.


Subject(s)
Bacterial Proteins/genetics , Biological Control Agents , Gene Expression Regulation, Bacterial , Lysobacter/physiology , Antibiosis , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Computational Biology/methods , Gene Expression Profiling , Gene Order , Mutation , Phosphorylation , Protein Domains/genetics , Transcriptome
12.
Curr Microbiol ; 74(4): 437-448, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28213660

ABSTRACT

Lysobacter enzymogenes OH11 produces heat-stable antifungal factor (HSAF) and lytic enzymes possessing antifungal activity. This study bio-prospected for other potential antifungal factors besides those above. The cells and extracellular metabolites of L. enzymogenes OH11 and the mutants ΔchiA, ΔchiB, ΔchiC, Δclp, Δpks, and ΔpilA were examined for antifungal activity against Fusarium graminearum PH1, the causal agent of Fusarium head blight (FHB). Results evidenced that OH11 produces an unidentified extracellular heat-stable degrading metabolite (HSDM) that exhibit degrading activity on F. graminearum PH1 chitinous hyphae. Interestingly, both heat-treated and non-heat-treated extracellular metabolites of OH11 mutants exhibited hyphae-degrading activity against F. graminearum PH1. Enzyme activity detection of heat-treated metabolites ruled out the possibility of enzyme degradation activity. Remarkably, the PKS-NRPS-deficient mutant Δpks cannot produce HSAF or analogues, yet its metabolites exhibited hyphae-degrading activity. HPLC analysis confirmed no HSAF production by Δpks. Δclp lacks hyphae-degrading ability. Therefore, clp regulates HSDM and extracellular lytic enzymes production in L. enzymogenes OH11. ΔpilA had impaired surface cell motility and significantly reduced antagonistic properties. ΔchiA, ΔchiB, and ΔchiC retained hyphae-degrading ability, despite having reduced abilities to produce chitinase enzymes. Ultimately, L. enzymogenes OH11 can produce other unidentified HSDM independent of the PKS-NRPS genes. This suggests HSAF and lytic enzymes production are a fraction of the antifungal mechanisms in OH11. Characterization of HSDM, determination of its biosynthetic gene cluster and understanding its mode of action will provide new leads in the search for effective drugs for FHB management.


Subject(s)
Antifungal Agents/metabolism , Bacterial Proteins/metabolism , Hyphae/metabolism , Lysobacter/metabolism , Hot Temperature , Protein Stability
13.
Appl Environ Microbiol ; 83(7)2017 04 01.
Article in English | MEDLINE | ID: mdl-28087536

ABSTRACT

Lysobacter enzymogenes is a ubiquitous soil gammaproteobacterium that produces a broad-spectrum antifungal antibiotic, known as heat-stable antifungal factor (HSAF). To increase HSAF production for use against fungal crop diseases, it is important to understand how HSAF synthesis is regulated. To gain insights into transcriptional regulation of the HSAF synthesis gene cluster, we generated a library with deletion mutations in the genes predicted to encode response regulators of the two-component signaling systems in L. enzymogenes strain OH11. By quantifying HSAF production levels in the 45 constructed mutants, we identified two strains that produced significantly smaller amounts of HSAF. One of the mutations affected a gene encoding a conserved bacterial response regulator, PilR, which is commonly associated with type IV pilus synthesis. We determined that L. enzymogenes PilR regulates pilus synthesis and twitching motility via a traditional pathway, by binding to the pilA promoter and upregulating pilA expression. Regulation of HSAF production by PilR was found to be independent of pilus formation. We discovered that the pilR mutant contained significantly higher intracellular levels of the second messenger cyclic di-GMP (c-di-GMP) and that this was the inhibitory signal for HSAF production. Therefore, the type IV pilus regulator PilR in L. enzymogenes activates twitching motility while downregulating antibiotic HSAF production by increasing intracellular c-di-GMP levels. This study identifies a new role of a common pilus regulator in proteobacteria and provides guidance for increasing antifungal antibiotic production in L. enzymogenesIMPORTANCE PilR is a widespread response regulator of the two-component system known for regulating type IV pilus synthesis in proteobacteria. Here we report that, in the soil bacterium Lysobacter enzymogenes, PilR regulates pilus synthesis and twitching motility, as expected. Unexpectedly, PilR was also found to control intracellular levels of the second messenger c-di-GMP, which in turn inhibits production of the antifungal antibiotic HSAF. The coordinated production of type IV pili and antifungal antibiotics has not been observed previously.


Subject(s)
Antifungal Agents/metabolism , Cyclic GMP/analogs & derivatives , Fimbriae, Bacterial/genetics , Gene Expression Regulation, Bacterial , Lysobacter/genetics , Lysobacter/metabolism , Soil Microbiology , Bacterial Proteins/genetics , Cyclic GMP/metabolism , Fimbriae, Bacterial/metabolism , Gene Library , Multigene Family , Mutation , Signal Transduction
14.
Microb Biotechnol ; 8(3): 499-509, 2015 May.
Article in English | MEDLINE | ID: mdl-25683974

ABSTRACT

Lysobacter enzymogenes is an important biocontrol agent with the ability to produce a variety of lytic enzymes and novel antibiotics. Little is known about their regulatory mechanisms. Understanding these will be helpful for improving biocontrol of crop diseases and potential medical application. In the present study, we generated an hfq (encoding a putative ribonucleic acid chaperone) deletion mutant, and then utilized a new genomic marker-free method to construct an hfq-complemented strain. We showed for the first time that Hfq played a pleiotropic role in regulating the antibacterial antibiotic biosynthesis and extracellular lytic enzyme activity in L. enzymogenes. Mutation of hfq significantly increased the yield of WAP-8294A2 (an antibacterial antibiotic) as well as the transcription of its key biosynthetic gene, waps1. However, inactivation of hfq almost abolished the extracellular chitinase activity and remarkably decreased the activity of both extracellular protease and cellulase in L. enzymogenes. We further showed that the regulation of hfq in extracellular chitinase production was in part through the impairment of the secretion of chitinase A. Collectively, our results reveal the regulatory roles of hfq in antibiotic metabolite and extracellular lytic enzymes in the underexplored genus of Lysobacter.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Depsipeptides/biosynthesis , Gene Expression Regulation, Bacterial , Host Factor 1 Protein/metabolism , Hydrolases/biosynthesis , Lysobacter/genetics , Lysobacter/metabolism , Biosynthetic Pathways/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Deletion , Gene Expression Profiling , Genetic Complementation Test , Host Factor 1 Protein/genetics , Molecular Sequence Data , Sequence Analysis, DNA
15.
Appl Microbiol Biotechnol ; 98(21): 9009-20, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25236801

ABSTRACT

Lysobacter enzymogenes is a bacterial biological control agent emerging as a new source of antibiotic metabolites, such as heat-stable antifungal factor (HSAF) and the antibacterial factor WAP-8294A2. The regulatory mechanism(s) for antibiotic metabolite biosynthesis remains largely unknown in L. enzymogenes. Clp, a cyclic adenosine monophosphate (cAMP)-receptor-like protein, is shown to function as a global regulator in modulating biocontrol-associated traits in L. enzymogenes. However, the genetic basis of Clp signaling remains unclear. Here, we utilized transcriptome/microarray analysis to determine the Clp regulon in L. enzymogenes. We showed that Clp is a global regulator in gene expression, as the transcription of 775 genes belonging to 19 functional groups was differentially controlled by Clp signaling. Analysis of the Clp regulon detected previously characterized Clp-modulated functions as well as novel loci. These include novel loci involved in antibiotic metabolite biosynthesis and surface motility in L. enzymogenes. We further showed experimentally that Clp signaling played a positive role in regulating the biosynthesis of HSAF and WAP-8294A2, as well as surface motility which is a type-IV-pilus-dependent trait. The regulation by Clp signaling of antibiotic (HSAF and WAP-8294A2) biosynthesis and surface motility was found to be independent. Importantly, we identified a factor Lysobacter acetyltransferase (Lat), a homologue of histone acetyltransferase Hpa2, which was regulated by Clp and involved in HSAF biosynthesis, but not associated with WAP-8294A2 production and surface motility. Overall, our study provided new insights into the regulatory role and molecular mechanism of Clp signaling in L. enzymogenes.


Subject(s)
Anti-Infective Agents/metabolism , Gene Expression Regulation, Bacterial , Locomotion , Lysobacter/physiology , Secondary Metabolism , Signal Transduction , Transcription Factors/metabolism , Gene Expression Profiling , Lysobacter/genetics , Microarray Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...