Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Insect Sci ; 30(6): 1607-1621, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36915030

ABSTRACT

Methyl-CpG (mCpG) binding domain (MBD) proteins especially bind with methylated DNA, and are involved in many important biological processes; however, the binding mechanism between insect MBD2/3 and mCpG remains unclear. In this study, we identified 2 isoforms of the MBD2/3 gene in Bombyx mori, MBD2/3-S and MBD2/3-L. Binding analysis of MBD2/3-L, MBD2/3-S, and 7 mutant MBD2/3-L proteins deficient in ß1-ß6 or α1 in the MBD showed that ß2-ß3-turns in the ß-sheet of the MBD are necessary for the formation of the MBD2/3-mCpG complex; furthermore, other secondary structures, namely, ß4-ß6 and an α-helix, play a role in stabilizing the ß-sheet structure to ensure that the MBD is able to bind mCpG. In addition, sequence alignment and binding analyses of different insect MBD2/3s indicated that insect MBD2/3s have an intact and conserved MBD that binds to the mCpG of target genes. Furthermore, MBD2/3 RNA interference results showed that MBD2/3-L plays a role in regulating B. mori embryonic development, similar to that of DNA methylation; however, MBD2/3-S without ß4-ß6 and α-helix does not alter embryonic development. These results suggest that MBD2/3-L recognizes and binds to mCpG through the intact ß-sheet structure in its MBD, thus ensuring silkworm embryonic development.


Subject(s)
Bombyx , DNA-Binding Proteins , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Bombyx/genetics , Bombyx/metabolism , CpG Islands , Protein Conformation, beta-Strand , DNA Methylation , Genomics
2.
Insect Sci ; 30(4): 1063-1080, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36419227

ABSTRACT

DNA methylation and transcription factors play roles in gene expression and animal development. In insects, DNA methylation modifies gene bodies, but how DNA methylation and transcription factors regulate gene expression is unclear. In this study, we investigated the mechanism that regulates the expression of Bombyx mori Zinc finger protein 615 (ZnF 615), which is a downstream gene of DNA methyltransferase 1 (Dnmt1), and its effects on the regulation of embryonic development. By progressively truncating the ZnF 615 promoter, it was found that the -223 and -190 nt region, which contains homeobox (Hox) protein cis-regulatory elements (CREs), had the greatest impact on the transcription of ZnF 615. RNA interference (RNAi)-mediated knockdown and overexpression of Hox family genes showed that Hox A1-like can enhance the messenger RNA level of ZnF 615. Further studies showed that Hox A1-like regulates ZnF 615 expression by directly binding to the -223 and -190 nt region of its promoter. Simultaneous RNAi-mediated knockdown or overexpression of Hox A1-like and Dnmt1 significantly inhibited or enhanced the regulatory effect of either gene alone on ZnF 615 expression, suggesting that both DNA methylation of gene bodies and binding of transcription factors to promoters are essential for gene expression. RNAi-mediated knockdown of Hox A1-like and Dnmt1 showed that the embryonic development was retarded and the hatching rate was decreased. Taken together, these data suggest that Hox A1-like and DNA methylation enhance the expression of ZnF 615, thereby affecting the development of B. mori embryos.


Subject(s)
Bombyx , Animals , DNA Methylation , Transcription Factors/genetics , Transcription Factors/metabolism , Homeodomain Proteins/genetics , Embryonic Development/genetics , Gene Expression , Zinc Fingers , Insect Proteins/genetics , Insect Proteins/metabolism
3.
Zool Res ; 43(4): 552-565, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35616260

ABSTRACT

Cell division and differentiation after egg fertilization are critical steps in the development of embryos from single cells to multicellular individuals and are regulated by DNA methylation via its effects on gene expression. However, the mechanisms by which DNA methylation regulates these processes in insects remain unclear. Here, we studied the impacts of DNA methylation on early embryonic development in Bombyx mori. Genome methylation and transcriptome analysis of early embryos showed that DNA methylation events mainly occurred in the 5' region of protein metabolism-related genes. The transcription factor gene zinc finger protein 615 ( ZnF615) was methylated by DNA methyltransferase 1 (Dnmt1) to be up-regulated and bind to protein metabolism-related genes. Dnmt1 RNA interference (RNAi) revealed that DNA methylation mainly regulated the expression of nonmethylated nutrient metabolism-related genes through ZnF615. The same sites in the ZnF615 gene were methylated in ovaries and embryos. Knockout of ZnF615 using CRISPR/Cas9 gene editing decreased the hatching rate and egg number to levels similar to that of Dnmt1 knockout. Analysis of the ZnF615 methylation rate revealed that the DNA methylation pattern in the parent ovary was maintained and doubled in the offspring embryo. Thus, Dnmt1-mediated intragenic DNA methylation of the transcription factor ZnF615 enhances its expression to ensure ovarian and embryonic development.


Subject(s)
Bombyx , Animals , Bombyx/genetics , Bombyx/metabolism , DNA Methylation , Embryonic Development/genetics , Female , Transcription Factors/genetics , Zinc Fingers
4.
STAR Protoc ; 3(1): 101219, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35284831

ABSTRACT

RNA interference (RNAi) is a technique used for posttranscriptional gene silencing, but lepidopteran insects are not sensitive to RNAi. Here, we present a protocol for knocking down the expression level of target genes by RNAi in Bombyx mori embryos. We describe the preparation of double-stranded RNAs (dsRNAs) of target genes, followed by microinjection of embryos at different developmental stages, with single or mixed dsRNA. Finally, we use RT-qPCR to verify RNAi efficiency. For complete details on the use and execution of this protocol, please refer to Xu et al. (2021).


Subject(s)
Bombyx , Animals , Bombyx/genetics , Insecta/genetics , RNA Interference , RNA, Double-Stranded/genetics
5.
Insect Sci ; 29(2): 344-362, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34388292

ABSTRACT

Bombyx mori has been extensively studied but the gene expression control of its embryonic development is unclear. In this study, we performed transcriptome profiling of six stages of B. mori embryonic development using RNA sequencing (RNA-seq). A total of 12 894 transcripts were obtained from the embryos. Of these, 12 456 transcripts were shared among the six stages, namely, fertilized egg, blastoderm, germ-band, organogenesis, reversal period, and youth period stages. There were 111, 48, 41, 54, 77, and 107 transcripts specifically expressed during the six stages, respectively. By analyzing weighted gene correlation networks and differently expressed genes, we found that during embryonic development, many genes related to DNA replication, transcription, protein synthesis, and epigenetic modifications were upregulated in the early embryos. Genes of cuticle proteins, chitin synthesis-related proteins, and neuropeptides were more abundant in the late embryos. Although pathways of juvenile hormone and the ecdysteroid 20-hydroxyecdysone, and transcription factors were expressed throughout the embryonic development stages, more regulatory pathways were highly expressed around the organogenesis stage, suggesting more gene expression for organogenesis. The results of RNA-seq were confirmed by quantitative real-time polymerase chain reaction of 16 genes of different pathways. Nucleic acid methylation and seven sites in histone H3 modifications were confirmed by dot blot and western blot. This study increases the understanding of the molecular mechanisms of the embryonic developmental process and information on the regulation of B. mori development.


Subject(s)
Bombyx , Animals , Ecdysterone/metabolism , Embryonic Development/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Insect Proteins/metabolism , Sequence Analysis, RNA , Transcriptome
6.
Insect Biochem Mol Biol ; 134: 103583, 2021 07.
Article in English | MEDLINE | ID: mdl-34010702

ABSTRACT

DNA methylation is an important epigenetic modification. DNA methyltransferases (Dnmts), which catalyze the formation of 5-methylcytosine, play a role in ovarian and embryonic development in some insects. However, the underlying mechanism of Dnmt in mediating ovarian and embryonic development remains unclear. In this study, the regulation and function of Bombyx mori Dnmt1 were investigated. By progressively deleting the sequence upstream of Dnmt1, a region located between -580 and -560 region from the transcription initiation site was found to have the most transcriptional activity. Electrophoretic mobility shift assay and chromatin immunoprecipitation demonstrated that transcription factor Y box binding protein (YBP), a homolog of human Y box binding protein 1 (YBX1), bound to the -580 to -560 region. YBP knockdown and overexpression in a Bombyx cell line indicated that YBP activates Dnmt1 expression. Furthermore, GST-pulldown and co-immunoprecipitation demonstrated that YBP and ovarian CCAAT/enhancer binding protein (C/EBPg) could bind each other. Simultaneous knockdown of C/EBPg and YBP was more effective than single-gene RNAi in inhibiting Dnmt1 expression and reducing the hatching rate. These results demonstrated that the interaction of C/EBPg and YBP activated Dnmt1 expression. Correlated with the expression profiles of the studies genes, our results suggest that high-level expression and interaction of C/EBPg and YBP in ovaries and embryos enhance the expression of Dnmt1, thus ensuring high reproduction rate in B. mori.


Subject(s)
Bombyx , DNA (Cytosine-5-)-Methyltransferases , Transcription Factors/genetics , Y-Box-Binding Protein 1/genetics , Animals , Bombyx/embryology , Bombyx/genetics , Bombyx/metabolism , Bombyx/physiology , Cell Line , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Epigenesis, Genetic , Female , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Ovary/metabolism , Reproduction
7.
iScience ; 24(2): 102040, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33521602

ABSTRACT

DNA methylation is an important epigenetic modification. However, the regulations and functions of insect intragenic DNA methylation remain unknown. Here, we demonstrate that a regulatory mechanism involving intragenic DNA methylation controls ovarian and embryonic developmental processes in Bombyx mori. In B. mori, DNA methylation is found near the transcription start site (TSS) of ovarian genes. By promoter activity analysis, we observed that 5' UTR methylation enhances gene expression. Moreover, methyl-DNA-binding domain protein 2/3 (MBD2/3) binds to the intragenic methyl-CpG fragment and recruits acetyltransferase Tip60 to promote histone H3K27 acetylation and gene expression. Additionally, genome-wide analyses showed that the peak of H3K27 acetylation appears near the TSS of methyl-modified genes, and DNA methylation is enriched in genes involved in protein synthesis in the B. mori ovary, with MBD2/3 knockdown resulting in decreased fecundity. These data uncover a mechanism of gene body methylation for regulating insect gene expression and reproduction.

8.
Epigenetics Chromatin ; 13(1): 34, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32887667

ABSTRACT

BACKGROUND: DNA methylation, as an essential epigenetic modification found in mammals and plants, has been implicated to play an important role in insect reproduction. However, the functional role and the regulatory mechanism of DNA methylation during insect organ or tissue development are far from being clear. RESULTS: Here, we found that DNA methylation inhibitor (5-aza-dC) treatment in newly molted pupae decreased the chitin content of pupal wing discs and adult wings and resulted in wing deformity of Bombyx mori. Transcriptome analysis revealed that the up-regulation of chitinase 10 (BmCHT10) gene might be related to the decrease of chitin content induced by 5-aza-dC treatment. Further, the luciferase activity assays demonstrated that DNA methylation suppressed the promoter activity of BmCHT10 by down-regulating the transcription factor, homeobox protein araucan (Bmara). Electrophoretic mobility shift assay, DNA pull-down and chromatin immunoprecipitation demonstrated that Bmara directly bound to the BmCHT10 promoter. Therefore, DNA methylation is involved in keeping the structural integrity of the silkworm wings from unwanted chitin degradation, as a consequence, it promotes the wing development of B. mori. CONCLUSIONS: This study reveals that DNA methylation plays an important role in the wing development of B. mori. Our results support that the indirect transcriptional repression of a chitin degradation-related gene BmCHT10 by DNA methylation is necessary to keep the proper wing development in B. mori.


Subject(s)
Bombyx/genetics , Chitinases/genetics , DNA Methylation , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Animals , Bombyx/growth & development , Bombyx/metabolism , Chitin/metabolism , Chitinases/metabolism , Epigenesis, Genetic , Insect Proteins/metabolism , Proteolysis , Wings, Animal/growth & development , Wings, Animal/metabolism
9.
Insect Biochem Mol Biol ; 116: 103264, 2020 01.
Article in English | MEDLINE | ID: mdl-31707207

ABSTRACT

Elaborate regulation of tissue- and stage-specific expression of genes is prerequisite for insect development. The hormone 20-hydroxyecdysone (20E) initiates metamorphosis by regulating the expression of a series of genes. However, how 20E orderly regulates the pupa-specific expression of genes remains unclear. In this study, we report a regulatory mechanism for the pupa-specific expression of chitin synthase A 2b (CHSA-2b) in Bombyx mori. We found that Broad-Complex Z4 (BR-C Z4) was up-regulated by 20E just before pupation, while transcription factor FoxJ and CHSA-2b were up-regulated during the pupal stage. There is a Fox cis-regulatory element in the CHSA-2b promoter region, and FoxJ protein bound to this element, enhancing the CHSA-2b transcription during the pupal stage. In addition to CHSA-2b, FoxJ also up-regulated the expression of 16 out of 19 pupa-specific genes tested. However, at the prepupal stage, 20E-induced BR-C Z4 inhibited the FoxJ transcription, indirectly inhibiting the CHSA-2b transcription. These data suggest that at the pre-pupation stage, 20E-induced BR-C Z4 inhibited the expression of pupa-stage genes like CHSA-2b by inhibiting the expression of FoxJ; by the pupal stage, the expression of BR-C Z4 decreased, releasing its inhibition on FoxJ, which then up-regulated the expression of the pupa-specific genes. This study explains the elaborate regulation of the pupa-specific gene expression during metamorphosis in B. mori.


Subject(s)
Bombyx/growth & development , Bombyx/genetics , Chitin Synthase/genetics , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Animals , Chitin Synthase/metabolism , Ecdysterone/metabolism , Forkhead Transcription Factors/metabolism , Insect Proteins/metabolism , Metamorphosis, Biological , Pupa/genetics , Pupa/growth & development , Up-Regulation , Wings, Animal/growth & development
10.
Insect Sci ; 27(6): 1186-1197, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31724818

ABSTRACT

In insects, 20-hydroxyecdysone (20E) and insulin-like growth factor-like peptides (IGFLPs) regulate the development of imaginal discs. However, how IGFLPs are up-regulated to impact the development of the pupal wing disc is still unclear. In this study, we investigated the expression regulation of IGFLP in the pupal wing disc of silkworm, Bombyx mori. We confirmed that B. mori IGFLP (BmIGFLP) was mainly expressed in the pupal wing disc and the expression of BmIGFLP could be significantly induced by 20E. Bioinformatics analysis of BmIGFLP promoter sequence revealed three cis-regulation elements (CREs) of signal transducer and activator of transcription (STAT), which is a key component in the Janus-activated kinase / STAT pathway. Luciferase activity assays showed that two CREs enhanced the transcriptional activity of BmIGFLP. Electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated that BmSTAT proteins in the nuclear extracts of B. mori pupal wing discs and BmN cells could only bind to the STAT CRE3, indicating that STAT CRE3 activated by BmSTAT enhances BmIGFLP expression at pupal stages. Although 20E could not enhance the expression of BmSTAT, 20E enhanced the nucleus translocation of BmSTAT to bind with the STAT CRE3 in the BmIGFLP promoter. The increase of transcriptional activity of the STAT CRE3 by overexpression of BmSTAT and addition of 20E in BmN cells confirmed this result. Taken together, all data indicate that BmSTAT is one of the transcription factors activating 20E-induced BmIGFLP expression in the pupal wing disc.


Subject(s)
Bombyx/genetics , Gene Expression Regulation , Insect Proteins/genetics , STAT Transcription Factors/genetics , Animals , Bombyx/growth & development , Bombyx/metabolism , Imaginal Discs/growth & development , Imaginal Discs/metabolism , Insect Proteins/metabolism , Pupa/genetics , Pupa/growth & development , Pupa/metabolism , STAT Transcription Factors/metabolism
11.
Epigenetics Chromatin ; 11(1): 32, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29903048

ABSTRACT

BACKGROUND: Accurate regulation of tissue- and stage-specific expression of genes is prerequisite for normal development in organisms. DNA methylation plays an important role in modulating gene expression in mammals and plants. However, there is no direct evidence showing how DNA methylation regulates gene transcription in insects. RESULTS: During the development of Bombyx mori wing, the expression level of DNA methyltransferase 1 (BmDnmt1) gradually declined and became stationary at pupal stage, resulting in a lower methylation rate of the intragenic promoter of the mid-pupal wing-specific gene BmCHSA-2b, an epidermal chitin synthase controlling mid-pupal wing development in B. mori. The higher methylation rate of the promoter in the pupal epidermis was decreased and BmCHSA-2b transcription was significantly increased by the treatment with the DNA methylation inhibitor, 5-azacytidine-2'-deoxycytidine, suggesting that DNA methylation regulates the tissue-specific expression of BmCHSA-2b. Pupa-specific transcription factor BmDEAF1 bound to the unmethylated intragenic promoter and activated the BmCHSA-2b transcription in the mid-pupal wing. BmDnmt1 and BmDeaf1 influenced the BmCHSA-2b transcription by binding competitively to the CpG island in the promoter. CONCLUSIONS: All the data together demonstrate that the cooperation between the down-regulation of BmDnmt1 and increased stage-specific expression of BmDeaf1 enhances BmCHSA-2b tissue- and stage-specific transcription to ensure mid-wing development in B. mori. This study highlights an elaborate regulation mechanism how tissue- and stage-specific gene expression is regulated through promoter methylation in insect development.


Subject(s)
Bombyx/growth & development , Chitin Synthase/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation , Transcription Factors/metabolism , Animals , Bombyx/genetics , Bombyx/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Insect Proteins/metabolism , Organ Specificity , Promoter Regions, Genetic , Transcription, Genetic , Wings, Animal/growth & development , Wings, Animal/metabolism
12.
Insect Biochem Mol Biol ; 87: 117-126, 2017 08.
Article in English | MEDLINE | ID: mdl-28676356

ABSTRACT

Insect chitin synthase A (CHSA) is an epidermis-specific enzyme that plays an essential role in insect development. In this study, the function and regulation of CHSA-2b, an alternative splicing variant of Bombxy mori CHSA that is discovered only in Lepidopteran insects, were investigated. Analysis of mRNA level showed that BmCHSA-2b was responsive to 20-hydroxyecdysone (20E) in pupal wing unlike BmCHSA-2a, which shares almost the identical sequence as BmCHSA-2b except the first 31 amino acids, suggesting that the expression of these two alternative splicing variants is driven by different promoters of CHSA gene. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis showed that BmCHSA-2b was up-regulated in the wing of mid-pupa unlike BmCHSA-2a, which was up-regulated in epidermis and wing disc at the beginning and end of pupal stage. Further analysis reveals that the up-regulations of BmCHSA-2a and BmCHSA-2b in pupal wing were consistent with the increase of chitin content and wing area at the same stages, respectively. Furthermore, the higher transcription level of BmCHSA-2b in the mid-pupal wing of male than that in female was consistent with the chitin content of pupal wing between genders. Injection of double-stranded RNAs of BmCHSA-2b resulted in the decrease in the area and chitin content of the wing, and irregular and crimpled vein. All these results together suggest that B. mori evolves an extra promoter in CHSA gene to activate BmCHSA-2b expression in the wing of mid-pupal stage in response to 20E, and BmCHSA-2b is required for the wing development in the mid-pupa of B. mori.


Subject(s)
Bombyx/enzymology , Alternative Splicing , Animals , Bombyx/genetics , Bombyx/growth & development , Chitin/metabolism , Chitin Synthase , Ecdysterone/pharmacology , Epidermis/enzymology , Female , Gene Expression Regulation, Developmental , Male , Pupa/enzymology , Pupa/genetics , Pupa/growth & development , RNA, Messenger/metabolism , Wings, Animal/enzymology , Wings, Animal/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL