Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(16): 163603, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701459

ABSTRACT

Phonon-based frequency combs that can be generated in the optical and microwave frequency domains have attracted much attention due to the small repetition rates and the simple setup. Here, we experimentally demonstrate a new type of phonon-based frequency comb in a silicon optomechanical crystal cavity including both a breathing mechanical mode (∼GHz) and flexural mechanical modes (tens of MHz). We observe strong mode competition between two approximate flexural mechanical modes, i.e., 77.19 and 90.17 MHz, resulting in only one preponderant lasing, while maintaining the lasing of the breathing mechanical mode. These simultaneous observations of two-mode phonon lasing state and significant mode competition are counterintuitive. We have formulated comprehensive theories to elucidate this phenomenon in response to this intriguing outcome. In particular, the self-pulse induced by the free carrier dispersion and thermo-optic effects interacts with two approximate flexural mechanical modes, resulting in the repetition rate of the comb frequency-locked to exact fractions of one of the flexural mechanical modes and the mode hopping between them. This phonon-based frequency comb has at least 260 comblines and a repetition rate as low as a simple fraction of the flexural mechanical frequency. Our demonstration offers an alternative optomechanical frequency comb for sensing, timing, and metrology applications.

2.
Phys Rev Lett ; 131(24): 243601, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38181134

ABSTRACT

An optical frequency comb is a spectrum of optical radiation which consists of evenly spaced and phase-coherent narrow spectral lines and is initially invented in a laser for frequency metrology purposes. A direct analog of frequency combs in the magnonic systems has not been demonstrated to date. In our experiment, we generate a new magnonic frequency comb in the resonator with giant mechanical oscillations through the magnomechanical interaction. We observe the magnonic frequency comb contains up to 20 comb lines, which are separated by the mechanical frequency of 10.08 MHz. The thermal effect based on the strong pump power induces the cyclic oscillation of the magnon frequency shift, which leads to a periodic oscillation of the magnonic frequency comb. Moreover, we demonstrate the stabilization and control of the frequency spacing of the magnonic frequency comb via injection locking. Our Letter lays the groundwork for magnonic frequency combs in the fields of sensing and metrology.

3.
Phys Rev Lett ; 129(24): 243601, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36563280

ABSTRACT

Mechanical degrees of freedom, which have often been overlooked in various quantum systems, have been studied for applications ranging from quantum information processing to sensing. Here, we develop a hybrid platform consisting of a magnomechanical cavity and an optomechanical cavity, which are coherently coupled by the straightway physical contact. The phonons in the system can be manipulated either with the magnetostrictive interaction or optically through the radiation pressure. Together with mechanical state preparation and sensitive readout, we demonstrate the microwave-to-optical conversion with an ultrawide tuning range up to 3 GHz. In addition, we observe a mechanical motion interference effect, in which the optically driven mechanical motion is canceled by the microwave-driven coherent motion. Manipulating mechanical oscillators with equal facility through both magnonic and photonic channels enables new architectures for signal transduction between the optical, microwave, mechanical, and magnetic fields.

4.
Appl Opt ; 58(20): 5540-5546, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31504024

ABSTRACT

In this paper, a vibration-displacement immunization model is proposed to measure the free spectral range of a resonant cavity by using a laser self-mixing velocimeter. The validity of this method is demonstrated by the experimental results, which can effectively get rid of low measurement accuracy related to the self-mixing vibration system due to the vibratory displacement. According to the periodic waveform separation characteristic of the self-mixing velocity signal, the free spectral range of a multilongitudinal mode diode laser is calculated to be 88.24 GHz. Moreover, the influences of different target velocities and signal sampling frequencies on the free spectral range have been analyzed in detail from the theoretical analysis. In the case of high signal sampling rate and low velocity, from which the undistorted velocity signal waveform at the integral order external cavity mode keeps stable, it is possible to obtain relatively accurate measured results.


Subject(s)
Immunization , Lasers , Models, Theoretical , Rheology/instrumentation , Vibration , Computer Simulation , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...