Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Rep ; 37: 101619, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38188361

ABSTRACT

Objective: To investigate the role of ARPC1B in GBM and its prognostic value. Methods: mRNA and protein expression of ARPC1B in GBM was analyzed using the TCGA; TIMER2 and the HPA databases, and protein expression differences were detected using immunohistochemistry. K-M analysis and Cox regression analysis were performed on high and low ARPC1B expression groups in the TCGA database. The relationship between immune cells and ARPC1B expression was explored using the TIMER2 database. GO and KEGG analyses were conducted to investigate the functions of ARPC1B-related genes in GBM. Results: ARPC1B was highly expressed in both GBM tissues and cell lines, and it was demonstrated as a prognostic biomarker for GBM. ARPC1B expression levels showed associations with immune cell populations within the GBM microenvironment. Conclusion: ARPC1B can regulating immune infiltration in the GBM microenvironment, indicating its potential as a novel therapeutic target for GBM.

2.
Molecules ; 27(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36431803

ABSTRACT

Chemical treatments of hair such as dyeing, perming and bleaching could cause mechanical damage to the hair, which weakens the hair fibers and makes the hair break more easily. In this work, hyaluronate (HA) with different molecular weight (MW) was investigated for its effects on restoring the mechanical properties of damaged hair. It was found that low-MW HA (average MW~42 k) could significantly improve the mechanical properties, specifically the elastic modulus, of overbleached hair. The fluorescent-labeling experiments verified that the low-MW HA was able to penetrate into the cortex of the hair fiber, while high-MW HA was hindered. Fourier transform infrared spectrometry (FT-IR) results implied the formation of additional intermolecular hydrogen bonds in the HA-treated hair. Thermos gravimetric analysis (TGA) indicated that the HA-treated hair exhibited decreased content of loosely bonded water, and differential scanning calorimetry (DSC) characterizations suggested stronger water bonding inside the HA-treated hair, which could alleviate the weakening effect of loosely bonded water on the hydrogen bond networks within keratin. Therefore, the improved elastic modulus and mechanical strength of the HA-treated hair could be attributed to the enhanced formation of hydrogen bond networks within keratin. This study illustrates the capability of low-MW HA in hair damage repair, implying an enormous potential for other moisturizers to be used in hair care products.


Subject(s)
Hair , Keratins , Humans , Molecular Weight , Spectroscopy, Fourier Transform Infrared , Hair/chemistry , Keratins/chemistry , Glycosaminoglycans/pharmacology , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...