Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Sci Food Agric ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38733135

ABSTRACT

BACKGROUND: Dietary kelp possesses a variety of useful biological qualities but does not have a toxic effect on the host. In this study, we examine how kelp dietary supplementation enhances the serum biochemistry, intestinal immunity, and metabolism of hybrid snakehead. A total of 810 juvenile hybrid snakeheads (Channa maculata ♀ × Channa argus ♂), with an initial average weight of 11.4 ± 0.15 g, were allocated randomly to three treatment groups (three replicates per group). The fish were fed for 60 days with isonitrogenous and isolipidic diets. The groups were the control group (C) (20% high-gluten flour), the medium replacement group (MR) (10% high-gluten flour and 10% kelp meal), and the full replacement group (FR) (0% high-gluten flour and 15% kelp meal). RESULTS: The results showed that dietary kelp increased the activity of serum antioxidant enzymes significantly and decreased the content of serum malondialdehyde (MDA) in hybrid snakeheads, with significant changes in the FR group (P < 0.05). The intestinal morphology results showed that dietary kelp helped to increase the specific surface area of intestinal villi, which was beneficial for intestinal digestion and absorption. According to transcriptome and quantitative real-time polymerase chain reaction (qRT-PCR) analysis, dietary kelp can improve the expression of intestinal immunity and metabolism-related pathways. Among them, immune-related genes MHC1 and HSPA1 were significantly up-regulated, and IGH, MHC2, and IL-8 were significantly down-regulated (P < 0.05). Lipid metabolism-related genes DGAT2, FABP2, RXRα, and PLPP1 were all significantly up-regulated (P < 0.05). CONCLUSION: Dietary kelp can effectively improve the antioxidant function of hybrid snakeheads, improve intestinal morphology, reduce intestinal inflammation, and promote intestinal lipid synthesis and transportation, thereby improving intestinal immunity and metabolic functions. © 2024 Society of Chemical Industry.

2.
Fish Shellfish Immunol ; 144: 109227, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984616

ABSTRACT

Millettia speciosa Champ (MSP) is a natural Chinese herb that improves gastrointestinal health and enhances animal immunity. An 8-week feeding trial with different MSP levels (0, 150, 300, and 600 mg/kg) was conducted to evaluate the promotive effects of MSP in Cyprinus carpio. Results indicate that MSP improved intestinal immunity to some extent evidenced by the immuno-antioxidant parameters and the 16S rRNA in the Illumina MiSeq platform. With the analysis of transcriptome sequencing, 4685 differentially expressed genes (DEGs) were identified, including 2149 up-regulated and 2536 down-regulated. According to the GO and KEGG enrichments, DEGs were mainly involved in the immune system. Transcriptional expression of the NOD-like signaling pathway and key genes retrieved from the transcriptome database confirmed that innate immunity was improved in response to dietary MSP administration. Therefore, MSP could be used as a feed supplement that enhances immunity. This may provide insight into Chinese herb additive application in aquaculture production.


Subject(s)
Carps , Millettia , Animals , Millettia/genetics , Carps/genetics , RNA, Ribosomal, 16S , Dietary Supplements/analysis , Intestines
3.
Animals (Basel) ; 13(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37958140

ABSTRACT

This research aimed to examine the effects of dietary rutin supplementation on growth, body composition, serum biochemical indexes, liver enzyme activities and antioxidant-related genes expression, intestinal morphology, and microbiota composition of juvenile yellow catfish (Pelteobagrus fulvidraco). Rutin was added to the basal diets at doses of 0 (control), 100 mg/kg, and 500 mg/kg. Each diet was fed randomly into three tanks, each tank containing 30 fish with an initial body mass of (10.27 ± 0.62) g. The feeding trial was conducted in an indoor recirculating aquiculture system at 28 °C for 56 days. According to the findings, the inclusion of 100 mg/kg rutin significantly improved the growth performance of yellow catfish and reduced the feed conversion ratio; however, the growth promotion effect was diminished when the diet was supplemented with 500 mg/kg of rutin. The inclusion of 500 mg/kg rutin in the diet significantly reduced the level of crude lipid and protein of the whole fish. Serum activities of alkaline phosphatase, albumin, and total protein were all significantly increased when fish were fed the diet supplemented with 500 mg/kg rutin, while serum glucose was significantly lower compared to the control group. Meanwhile, dietary rutin at a concentration of 500 mg/kg significantly induced the hepatic mRNA expressions of antioxidant-related genes (including Cu/Zn-SOD, Mn-SOD, CAT, GPx) and inflammatory-associated genes (including TNFα, IL-10, LYZ). Incorporating rutin at doses of 100 mg/kg and 500 mg/kg into the diets resulted in a notable increase in superoxide dismutase (SOD) activity, while simultaneously reducing malondiadehyde (MDA) content in the liver and intestine. Intestinal villus height, villus width, muscular thickness, and lumen diameter were significantly increased with the administration of 500 mg/kg of dietary rutin. Gut microbial diversity analysis indicated that supplementing diets with 100 mg/kg and 500 mg/kg rutin significantly enhanced the abundance of Cetobacterium while decreasing Plesiomonas richness. In conclusion, dietary rutin levels at 100 mg/kg could enhance the growth, antioxidant capability, and intestinal health of yellow catfish under present experimental conditions.

4.
Antioxidants (Basel) ; 12(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37627626

ABSTRACT

The benefits of resistant starch on hypoglycemia, obesity prevention, antioxidant status and the alleviation of metabolic syndrome have received considerable attention. In this study, we explored how dietary kelp resistant starch (KRS) enhances intestinal morphology and function through a microbiome-metabolomic analysis. Hybrid snakeheads (initial weight: 11.4 ± 0.15 g) were fed experimental diets for 60 days. Fish were fed a basic wheat starch diet and the KRS diet. Dietary KRS improved intestinal morphology and enhanced intestinal antioxidant and digestive capabilities, as evidenced by decreased intestinal damage and upregulated intestinal biochemical markers. The microbiome analysis showed that KRS administration elevated the proportion of butyrate-producing bacteria and the abundance of beneficial bacteria that increases insulin sensitivity. Furthermore, significant alterations in metabolic profiles were observed to mainly associate with the amino acid metabolism (particularly arginine production), the metabolism of cofactors and vitamins, fat metabolism, glutathione metabolism, and the biosynthesis of other secondary metabolites. Additionally, alterations in intestinal microbiota composition were significantly associated with metabolites. Collectively, changes in intestinal microbiota and metabolite profiles produced by the replacement of common starch with dietary KRS appears to play an important role in the development of intestinal metabolism, thus leading to improved intestinal function and homeostasis.

5.
Metabolites ; 13(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37512539

ABSTRACT

The aim of this study was to evaluate the effects of wheat gluten as a substitute for fish meal (FM) and soy protein concentrate (SPC) in the low-fishmeal-based extruded diet in red spotted grouper Epinephelus akaara. Eight isonitrogenous (441-456 g kg-1) and isocaloric (21.5-22.0 MJ kg-1) diets were produced, including the control diet (R0), three diets with 33.3, 66.7, and 100% FM being replaced by a mixture of wheat gluten, wheat, and taurine (GWT) (RF1, RF2, RF3), three diets with 33.3, 66.7, and 100% SPC replaced by GWT (RS2, RS2, RS3) and one diet with 50% FM and 50% SPC replaced by GWT (RFS). Results showed that feed intake (FI), weight gain (WG), protein retention efficiency, and liver superoxide dismutase activity increased linearly, while feed conversion ratio (FCR) decreased linearly with the decrease of dietary FM. Additionally, FI, WG, and FCR significantly increased with decreasing dietary SPC. Overall, 100% FM or 61.2% SPC can be safely replaced by wheat gluten in the red-spotted grouper diet containing 20.0% FM and 21.4% SPC.

6.
Fish Shellfish Immunol ; 139: 108916, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37355219

ABSTRACT

To assess the level of oxidative stress, expression of immune-related genes, histomorphology, and changes in the intestinal tract of hybrid snakeheads(Channa maculata ♀ × Channa argus ♂) under stress from kelp powder in place of flour against Aeromonas hydrophila. We set up experimental diets: a control (C) diet of 20% flour, an experimental (MR) diet of 10% kelp powder and 10% flour, and an experimental (FR) diet of 0% starch and 15% kelp powder. The experimental fish in each group were infected with Aeromonas hydrophila after 60 days of feeding. For this experiment, some of the experimental fish in group C were injected with PBS as a negative control group (PBS). The results showed that the C group had significantly higher SOD, CAT, and T-AOC activity and expression of TAK1, IKKß, IL-1ß, and TNF-α genes in the MyD88 pathway than the PBS group. CAT activity and the expression of TAK1, IL-1ß and TNF-α genes in the MyD88 pathway were significantly lower in the MR group than in the C group. Furthermore, the number of goblet cells in the MR group was significantly higher than in the C group. Furthermore, microorganisms such as Bacteroidota and Actinobacteriota were significantly lower in the C group than in the PBS and FR groups, as were beneficial bacteria such as Clostridium_sensu_stricto_1 and Sphingomonas. Replacing flour with kelp powder increases hybrid snakehead gut resistance to Aeromonas hydrophila.


Subject(s)
Fish Diseases , Gram-Negative Bacterial Infections , Kelp , Animals , Aeromonas hydrophila , Powders , Myeloid Differentiation Factor 88 , Tumor Necrosis Factor-alpha , Fishes/genetics , Diet , Animal Feed/analysis , Gram-Negative Bacterial Infections/veterinary
7.
Chemosphere ; 327: 138485, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36966930

ABSTRACT

In this study, the 16S rRNA gene amplicon sequencing technique was used to explore the microbial diversity and differences in the water environment of the Pearl River Estuary in Nansha District with various land use types such as the aquaculture area, industrial area, tourist area, agricultural plantation, and residential area. At the same time, the quantity, type, abundance, and distribution of two types of emerging environmental pollutants, antibiotic resistance genes (ARGs) and microplastics (MPs), are explored in the water samples from different functional areas. The results show that the dominant phyla in the five functional regions are Proteobacteria, Actinobacteria and Bacteroidetes, and the dominant genera are Hydrogenophaga, Synechococcus, Limnohabitans and Polynucleobacter. A total of 248 ARG subtypes were detected in the five regions, belonging to nine classes of ARGs (Aminoglycoside, Beta_Lactamase, Chlor, MGEs, MLSB, Multidrug, Sul, Tet, Van). Blue and white were the dominant MP colors in the five regions; 0.5-2 mm was the dominant MP size, and cellulose, rayon, and polyester comprised the highest proportion of the plastic polymers. This study provides the basis for understanding the environmental microbial distribution in estuaries and the prevention of environmental health risks from ARGs and microplastics.


Subject(s)
Microbiota , Microplastics , Plastics , Rivers/microbiology , Anti-Bacterial Agents/analysis , Estuaries , RNA, Ribosomal, 16S/genetics , Genes, Bacterial , Microbiota/genetics , Drug Resistance, Microbial/genetics , Water , China
8.
Water Environ Res ; 95(2): e10836, 2023.
Article in English | MEDLINE | ID: mdl-36744448

ABSTRACT

It is essential to increase the use of carbohydrates as an energy source and improve protein synthesis and utilization to reduce ammonia nitrogen emissions. A 60-day cultural experiment was conducted to assess the impact of resistant starch (kelp meal, Laminaria japonica) replacing starch on water quality, nitrogen and phosphorus budget and microbial community of hybrid snakehead. Approximately 1350 experimental fish (11.4 ± 0.15 g) were randomly divided into control group (C, 20% starch) and four resistant starch groups: low replacement group (LR, 15% starch), medium replacement group (MR, 10% starch), high replacement group (HR, 5% starch) and full replacement group (FR, 0% starch). The crude protein and crude fat content of hybrid snakehead fish fed with the FR diet had the most significant improvement (P < 0.05). However, resistant starch also increased the effectiveness of nitrogen and phosphorus utilization in hybrid snakeheads, which decreased the proportion of total nitrogen and total phosphorus in tail water. The minimum nitrogen and phosphorus emission rate was when the starch level was 6.1%. Denitrifying microbes including Gemmobacter, Rhodobacter, Emticicia and Bosea have become much more prevalent in group FR (P < 0.05). In general, replacing starch with resistant starch can enhance the rate at which nitrogen and phosphorus are used in feeding, lessening water pollution and altering environmental microbial composition. PRACTITIONER POINTS: Resistant starch (RS) improves whole fish nutritional content. Resistant starch improves dietary nitrogen and phosphorus utilization. Resistant starch acts as a carbon source and encourages the colonization of denitrifying bacteria in water.


Subject(s)
Laminaria , Microbiota , Animals , Animal Feed/analysis , Fishes/metabolism , Laminaria/metabolism , Nitrogen/metabolism , Phosphorus , Resistant Starch , Starch , Water Quality
9.
Fish Physiol Biochem ; 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36219350

ABSTRACT

Because of their unique glycosidic bond structure, non-starch polysaccharides (NSP) are difficult for the stomach to break down. NSP can be classified as insoluble NSP (iNSP, fiber, lignin, etc.) and soluble NSP (sNSP, oligosaccharides, ß-glucan, pectin, fermentable fiber, inulin, plant-derived polysaccharides, etc.). sNSP is viscous, fermentable, and soluble. Gut microbiota may catabolize sNSP, which can then control fish lipid, glucose, and protein metabolism and impact development rates. This review examined the most recent studies on the impacts of various forms of sNSP on the nutritional metabolism of various fish in order to comprehend the effects of sNSP on fish. According to certain investigations, sNSP can enhance fish development, boost the activity of digestive enzymes, reduce blood sugar and cholesterol, enhance the colonization of good gut flora, and modify fish nutrition metabolism. In-depth research on the mechanism of action is also lacking in most studies on the effects of sNSP on fish metabolism. It is necessary to have a deeper comprehension of the underlying processes by which sNSP induce host metabolism. This is crucial to address the main issue of the sensible use of carbohydrates in fish feed.

10.
Fish Shellfish Immunol ; 124: 74-81, 2022 May.
Article in English | MEDLINE | ID: mdl-35378307

ABSTRACT

The interaction between microplastics and contaminants has potentially generated new undefined risks on animals and ecosystems, and nano-microplastics are considered to be more harmful than microplastics. This experiment investigated the interactions and effects of nano-microplastics with heavy metals cadmium in hybrid snakehead. Different concentrations of nano-microplastics 80 nm (50 µg/L and 500 µg/L) and Cd (50 µg/L) were used for exposure, and four sampling points were set for 24 h, 48 h, 96 h and clear-48 h. Results indicated that the morphology of gill was altered under the influence of nano-microplastics and cadmium, and the damage was aggravated with time. Nano-microplastics and Cd can cause oxidative damage to fish liver partly by effect the activities of antioxidant enzyme, and significantly suppressed the expressions of genes related to the inflammation (IL-1ß and TNF-α) and as well as significantly up-regulated the expression of genes HSP70 and SOD. Additionally, the mRNA levels of MT gene can be speculated that the heavy metal cadmium may accumulated in the body over time. And the concentration of heavy metals will also affect their accumulation in the body. Our study elucidated the nano-microplastics and Cd will increase the impact on environmental and organisms that the nano-microplastics contribute to the bioaccumulation of metals, which served as a new support for study the interaction between environmental contaminants.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Animals , Cadmium/toxicity , Ecosystem , Fishes/genetics , Metals, Heavy/toxicity , Microplastics , Plastics , Water Pollutants, Chemical/toxicity
11.
Biol Trace Elem Res ; 200(7): 3377-3387, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34564831

ABSTRACT

Microplastics can accumulate residual drugs and heavy metals in the environment and accumulate through the layers of the food chain, ultimately causing harm to human health. The pollution of microplastics in the freshwater environment is becoming more and more serious, which directly affects the safety of aquatic organisms. This experiment studied the effects of single and composite microplastics and Cd on the tissue damage, antioxidant, and immune response of juvenile Channa argus. Microplastics with different diameters of 80 nm, 0.5 µm (200 µg/L), and Cd (50 µg/L) were used for exposure, and four sampling points were set for 24 h, 48 h, 96 h, and clear 48 h. Under different treatments, a certain degree of gill tissue damage can be found in 96 h. Microplastics and Cd can cause oxidative stress and affect the antioxidant status, and the impact of 0.5-µm microplastics is stronger than that of 80-nm microplastics. There is an antagonistic effect between the two microplastics and Cd during compound exposure, but the activity of CAT shows a synergistic effect. Microplastics and Cd affect the expression of immune-related genes to varying degrees. When exposed together, the expression of HSP70 gene all showed mutual antagonism, while the expression of IL-1ß gene was different. The expression of the MT gene can infer the ability of microplastics to accumulate Cd, and microplastics with a small diameter of 80 nm have stronger enrichment capabilities.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Cadmium/metabolism , Cadmium/toxicity , Fishes/metabolism , Plastics/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
12.
Environ Sci Pollut Res Int ; 29(16): 23806-23822, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34817812

ABSTRACT

Pond aquaculture has become the most important and broadest breeding model in China, and an extremely important source of aquatic products, but the potential hazard factors of potential pathogenic bacteria (PPB), antibiotic resistance bacteria (ARB), and antibiotic resistance genes (ARGs) in aquaculture environment are largely invisible. In the present study, the bacterial communities in the larvae, juvenile, rearing, and harvesting culture stages of great grass carp (Ctenopharyngodon idellus) ponds were investigated and the structure of microbial flora analysis showed that the larvae culture stage has the highest abundance and the most dominant phyla were Proteobacteria (27.8%). A total of 123 significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations and the relative abundance of nine bacterial phenotypes implied that the larvae culture stage had the most abundance of pathogenic potential and mobile elements. The correlation analyses of environmental factors showed that temperature, stocking density, pH, and transparency showed the significant impacts on both the distribution of microbiome and the PPB. More importantly, a total of 40 ARB were identified, and 16 ARGs have the detection rates of 100%, which revealed that they are widely distributed and highly enriched in the aquaculture production. Notably, this is the first robust report to analyze and understand the PPB, ARB, and ARGs characteristics and dynamic changes in the pond aquaculture.


Subject(s)
Carps , Ponds , Angiotensin Receptor Antagonists/analysis , Angiotensin-Converting Enzyme Inhibitors , Animals , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Aquaculture , Bacteria/genetics , Drug Resistance, Microbial/genetics , Genes, Bacterial , Ponds/microbiology , Water/analysis
13.
Bull Environ Contam Toxicol ; 107(4): 640-650, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34379141

ABSTRACT

Microplastics (MPs) (< 5 mm) and nanoplastics (NPs) (< 100 nm) are emerging environmental pollutants and have been proved could cause a series of toxicity in aquatic organisms. In this study, the effects on gut microbiota of adult zebrafish exposed for 21 days to 10 µg/L and 1 mg/L of MPs (8 µm) and NPs (80 nm) were evaluated. We analyzed the intestinal microbial community of zebrafish using high throughput sequencing of the 16S rRNA gene V3-V4 region and also performed transcriptional profiling of the inflammation pathway related genes in the intestinal tissues. Our results showed that both spherical polystyrene MPs and NPs could induce microbiota dysbiosis in the gut of zebrafish. The flora diversity of gut microbiota significantly increased under a high concentration of NPs. At the phylum level, the abundance of Proteobacteria increased significantly and the abundance of Fusobacteria, Firmicutes and Verrucomicrobiota decreased significantly in the gut after 21-day exposure to 1 mg/L of both MPs and NPs. Furthermore, interestingly, the abundance of Actinobacteria decreased in the MPs treatment groups but increased in the NPs treatment groups. At the genus level, revealed that the relative abundance of Aeromonas significantly increased both in the MPs and NPs treatment groups. Moreover, it was observed that NPs increased mRNA levels of il8, il10, il1ß and tnfα in the gut, but not in MPs exposure group, indicating that the NPs may have a more serious effect on the gut of zebrafish than MPs to induce microbiota dysbiosis and inflammation in the gut.


Subject(s)
Microbiota , Microplastics , Animals , Dysbiosis/chemically induced , Inflammation , Plastics , RNA, Ribosomal, 16S/genetics , Zebrafish
14.
Fish Shellfish Immunol ; 117: 95-103, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34284110

ABSTRACT

The toxic effect of dietary histamine on the intestine of aquatic animals has been demonstrated, but reports on the morphological observation of the intestine are limited. Thus, a feeding trial was conducted to determine the effect of dietary histamine on intestinal histology, inflammatory status and gut microbiota of yellow catfish (Pelteobagrus fulvidraco). Here, we showed that histamine-rich diets caused severe abnormality and damage to the intestine, including a decreased villi length and reduced villi number. In addition, the quantitative real-time PCR (qRT-PCR) demonstrates that histamine-rich diets increased the expression of pro-inflammatory genes (Tnfα, Il1ß, and Il8) and decreased the expression of an anti-inflammatory gene (Il10). Furthermore, the alpha-diversity (observed OTUs, Chao1, Shannon and Simpson) and beta-diversity (non-metric multidimensional scaling, with the stress value of 0.17) demonstrated that histamine-rich diets caused alterations in gut microbiota composition and diversity. Co-occurrence networks analysis of the gut microbiota community showed that the histamine influenced the number and the relationship between bacteria species in the phyla of Acidobacteria, Proteobacteria, and Bacteroidetes, which caused the instability of the intestinal microbiota community. Additionally, random forest selected six bacterial species as the biomarkers to separate the three groups, which are Lachnospiraceae Blautia (V520), Bacteroidales S24.7 (V235), Chloroplast Streptophyta (V368), Actinomycetales Streptomycetaceae (V152), Clostridia Clostridiales (V491) and Paraprevotellaceae Prevotella (V245). Finally, Pearson correlation analysis demonstrated that V520, V235, and V491 were negatively correlated with pro-inflammatory factors (Tnfα, Il1ß, and Il8) and positively correlated with an anti-inflammatory factor (Il10), which indicated that V520, V235, and V491 might be anti-inflammatory. These findings improved our understanding of the toxic effect of dietary histamine to intestinal histological damage, the induction of mucosa inflammatory status, and the alteration of gut microbiota.


Subject(s)
Catfishes , Gastrointestinal Microbiome/drug effects , Histamine/toxicity , Intestines/drug effects , Animals , Catfishes/genetics , Catfishes/immunology , Catfishes/microbiology , Cytokines/genetics , Diet , Fish Diseases/chemically induced , Fish Diseases/genetics , Fish Diseases/microbiology , Fish Diseases/pathology , Fish Proteins/genetics , Gene Expression Regulation/drug effects , Inflammation/chemically induced , Inflammation/genetics , Inflammation/microbiology , Inflammation/pathology , Intestines/immunology , Intestines/pathology , Male
15.
Mar Environ Res ; 169: 105377, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34087762

ABSTRACT

Microplastics (MPs) are a new type of environmental pollutant. To investigate the response of shrimp and their microflora to MPs, Litopenaeus vannamei (L. vannamei) was exposed to different concentrations of MPs (0, 50, 500, and 5000 µg/L, i.e., C, L, M and H groups) for 48 h. The survival rate, intake of MPs, immune-related gene expression and microbial response under MP exposure were detected. The results showed that the survival rate in the H group was significantly lower than those in the C, L and M groups, while the relative expression levels of proPO, TLR and ALF in the M and H groups were significantly higher than those in the C and L groups. For the microbial response, microbial community richness in the L group was significantly decreased, while community richness and diversity in the H group were significantly increased compared with those in the C group. The relative abundances of 3, 4 and 11 taxa were significantly changed after MP treatment at the phylum, class and genus levels, respectively. The results suggested that short-term exposure to low concentrations of MPs did not cause immune defense responses or death but affected the balance of bacterial composition in shrimp. Exposure to high concentrations of MPs can induce immune responses and microbial changes and can even cause death in shrimp. These findings increase our understanding of MP impacts on aquatic organisms.


Subject(s)
Microbiota , Penaeidae , Animals , Bacteria , Immunity, Innate , Microplastics , Plastics
16.
J Cachexia Sarcopenia Muscle ; 12(3): 746-768, 2021 06.
Article in English | MEDLINE | ID: mdl-33955709

ABSTRACT

BACKGROUND: Satellite cells (SCs) are critical to skeletal muscle regeneration. Inactivation of SCs is linked to skeletal muscle loss. Transferrin receptor 1 (Tfr1) is associated with muscular dysfunction as muscle-specific deletion of Tfr1 results in growth retardation, metabolic disorder, and lethality, shedding light on the importance of Tfr1 in muscle physiology. However, its physiological function regarding skeletal muscle ageing and regeneration remains unexplored. METHODS: RNA sequencing is applied to skeletal muscles of different ages to identify Tfr1 associated to skeletal muscle ageing. Mice with conditional SC ablation of Tfr1 were generated. Between Tfr1SC/WT and Tfr1SC/KO (n = 6-8 mice per group), cardiotoxin was intramuscularly injected, and transverse abdominal muscle was dissected, weighted, and cryosectioned, followed by immunostaining, haematoxylin and eosin staining, and Masson staining. These phenotypical analyses were followed with functional analysis such as flow cytometry, tread mill, Prussian blue staining, and transmission electron microscopy to identify pathological pathways that contribute to regeneration defects. RESULTS: By comparing gene expression between young (2 weeks old, n = 3) and aged (80 weeks old, n = 3) mice among four types of muscles, we identified that Tfr1 expression is declined in muscles of aged mice (~80% reduction, P < 0.005), so as to its protein level in SCs of aged mice. From in vivo and ex vivo experiments, Tfr1 deletion in SCs results in an irreversible depletion of SCs (~60% reduction, P < 0.005) and cell-autonomous defect in SC proliferation and differentiation, leading to skeletal muscle regeneration impairment, followed by labile iron accumulation, lipogenesis, and decreased Gpx4 and Nrf2 protein levels leading to reactive oxygen species scavenger defects. These abnormal phenomena including iron accumulation, activation of unsaturated fatty acid biosynthesis, and lipid peroxidation are orchestrated with the occurrence of ferroptosis in skeletal muscle. Ferroptosis further exacerbates SC proliferation and skeletal muscle regeneration. Ferrostatin-1, a ferroptosis inhibitor, could not rescue ferroptosis. However, intramuscular administration of lentivirus-expressing Tfr1 could partially reduce labile iron accumulation, decrease lipogenesis, and promote skeletal muscle regeneration. Most importantly, declined Tfr1 but increased Slc39a14 protein level on cellular membrane contributes to labile iron accumulation in skeletal muscle of aged rodents (~80 weeks old), leading to activation of ferroptosis in aged skeletal muscle. This is inhibited by ferrostatin-1 to improve running time (P = 0.0257) and distance (P = 0.0248). CONCLUSIONS: Satellite cell-specific deletion of Tfr1 impairs skeletal muscle regeneration with activation of ferroptosis. This phenomenon is recapitulated in skeletal muscle of aged rodents and human sarcopenia. Our study provides mechanistic information for developing novel therapeutic strategies against muscular ageing and diseases.


Subject(s)
Cation Transport Proteins , Ferroptosis , Animals , Mice , Muscle, Skeletal , Myoblasts , Receptors, Transferrin/genetics , Regeneration
17.
Fish Shellfish Immunol ; 113: 154-161, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33862235

ABSTRACT

Abundant microplastics was found in aquatic ecosystem and aquatic organisms, which raised many concerns in public. Silver carp (Hypophthalmichthys molitrix), a species filter-feeding planktivorous fish, feed on particle between 4 and 85 µm in size, and the respiratory process works together with feeding mechanism when filtering plankton from water. The aim of this study was to assess the physiological response of silver carp exposed to 5 µm polystyrene microspheres during 48 h of exposure followed by 48 h of depuration through the gill histology, and oxidative stress biomarkers in intestine. The results revealed that microplastics can pass through the whole digestive tract of silver carp and be excreted by feces. Low microplastic concentration (80 µg/L) induced oxidative stress and up-regulation of TUB84 and HSP70 gene in intestine, and silver carp have ability to recover after the exposure to microplastic was removed. High microplastic concentration (800 µg/L) definitely cause significant damage to gills and intestines, in this situation, far beyond the possibility of fish own repair, and even when the threaten removed, silver carp can't recovery soon. Our studies assessed the dosage-effect relationship with physiological stress on silver carp when exposure to microplastics.


Subject(s)
Carps , Microplastics/toxicity , Oxidative Stress , Polystyrenes/toxicity , Toxicity Tests, Acute/veterinary , Water Pollutants/toxicity , Animals , Biomarkers/metabolism , Dose-Response Relationship, Drug , Intestines/drug effects , Microspheres , Particulate Matter/toxicity
18.
Fish Shellfish Immunol ; 114: 112-118, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33905842

ABSTRACT

Antimicrobial peptides have broad-spectrum antibacterial properties and low drug resistance, and they demonstrate great potential as antibiotic substitutes. In this study, five dietary mixed antimicrobial peptide supplement groups were set and fed to Pengze crucian carp for 10 weeks. The 6 groups were G0 (control group) and 5 additional groups: G1 (100 mg/kg), G2 (200 mg/kg), G3 (400 mg/kg), G4 (800 mg/kg) and G5 (1600 mg/kg). The results showed that the final body weight (FBW), weight gain rate (WGR) and specific growth rate (SGR) of fish in G1 and G2 were higher than those of fish in the control group, and G1 was significantly higher than G0 (P < 0.05). In addition, the FBW, WGR, and SGR of the G3 group were significantly lower than those of the G0 group. The chymotrypsin, lipase and amylase activities of G1 and G2 were significantly upregulated compared with G0 and reached peak values in G1. The activity of T-AOC and SOD in the addition group was higher (except G2 and G4) than that in the control groups, and significantly increased in G3 compared to the control group. The activity of MDA in the addition group was lower than that in the control group (p > 0.05). The expression levels of TLR-4, MYD88 and TNF-α in the three organs of the addition group were higher than those in G0 and reached the peak value in G3 (p < 0.05). Furthermore, the expression levels of TLR-4, MYD88 and TNF-α in the three organs of G3 were significantly lower than those in G0 and lower than those in the other supplemented groups. The expression levels of IL-10 and IL-11 tended to be upregulated after A. hydrophila challenge, and G3 in different organs was significantly higher than that in other supplemented groups and G0. The results of this study show that an appropriate amount of mixed antimicrobial peptides can improve the growth performance and antioxidant and immune capabilities of Pengze crucian carp and can also play a positive role in the treatment of A. hydrophila infection.


Subject(s)
Antioxidants/metabolism , Goldfish/growth & development , Pore Forming Cytotoxic Proteins/pharmacology , Animal Feed/analysis , Animals , Diet/veterinary , Gene Expression Regulation/drug effects , Goldfish/immunology , Goldfish/metabolism , Pore Forming Cytotoxic Proteins/administration & dosage , Pore Forming Cytotoxic Proteins/chemistry
19.
Environ Sci Pollut Res Int ; 28(29): 38839-38854, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33745047

ABSTRACT

The quality and safety of the aquatic products have gradually become the focus of global attention. In this study, the environmental eukaryotic and fungi communities in pond-cultured grass carp (Ctenopharyngodon idellus) and the koi carp (Cyprinus carpio L.) were investigated. For comparative analysis, the alpha diversity shows that the environmental microbial abundance in the koi carp groups were higher than that in the grass carp groups, while beta diversity reveals that the differences of the microbial community composition and structures in the grass carp groups were significantly higher than those in the koi carp groups. Meanwhile, the environmental microbial diversity of grass carp groups was higher than that of koi carp groups at phylum level, but showed no significant difference at genus level. Additionally, the dominant total phyla were Opisthokonta, Stramenopiles plusAlveolates plusRhizaria, Archaeplastida, Cryptophyceae, and Centrohelida for the 18S rRNA gene and Ciliophora, Chlorophyta, and Ascomycota for the ITS2 rRNA gene in both of the two carp groups. Additionally, annotation analysis showed that the biomarkers in the grass carp groups are significantly higher than those of the koi carp groups. Furthermore, the functional prediction of Funguild showed significant difference in outputs, while similarity in trophic modes and guild types between the two carp groups. Meanwhile, the total relative abundances of animal pathogen, fungal parasite, and plant pathogen were extremely similar between the two carp groups. Surprisingly, one pathogenic fungus of genus Fusarium was identified in both the environments of two carp groups based on filtered operational taxonomic unit tables. Overall, this is the first robust report to understand the characteristics of environmental eukaryotic microorganisms and fungi in the edible and ornamental carps. Our results also provide the basic data for the prevention of fungal diseases and the healthy culture of the carps.


Subject(s)
Carps , Fish Diseases , Animals , Aquaculture , Eukaryota , Fungi , Ponds
20.
NPJ Biofilms Microbiomes ; 7(1): 5, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33469034

ABSTRACT

Clarifying mechanisms underlying the ecological succession of gut microbiota is a central theme of gut ecology. Under experimental manipulations of zebrafish hatching and rearing environments, we test our core hypothesis that the host development will overwhelm environmental dispersal in governing fish gut microbial community succession due to host genetics, immunology, and gut nutrient niches. We find that zebrafish developmental stage substantially explains the gut microbial community succession, whereas the environmental effects do not significantly affect the gut microbiota succession from larvae to adult fish. The gut microbiotas of zebrafish are clearly separated according to fish developmental stages, and the degree of homogeneous selection governing gut microbiota succession is increasing with host development. This study advances our mechanistic understanding of the gut microbiota assembly and succession by integrating the host and environmental effects, which also provides new insights into the gut ecology of other aquatic animals.


Subject(s)
Gastrointestinal Microbiome , Zebrafish/growth & development , Zebrafish/microbiology , Animals , Environment , Fresh Water/chemistry , Fresh Water/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...