Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(28): 10867-10881, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39027280

ABSTRACT

The photochemistry of two representative thermally activated delayed fluorescence (TADF) emitters based on the multiple resonance effect (MRE) (DABNA-1 and DtBuCzB) was studied. No significant TADF was observed in fluid solution, although the compounds have a long-lived triplet state (ca. 30 µs). We found that these planar boron molecules bind with Lewis bases, e.g., 4-dimethylaminopyridine (DMAP) or an N-heterocyclic carbene (NHC). A new blue-shifted absorption band centered at 368 nm was observed for DtBuCzB upon formation of the adduct; however, the fluorescence of the adduct is the same as that of the free DtBuCzB. We propose that photo-dissociation occurs for the DtBuCzB-DMAP adduct, which is confirmed by femtosecond transient absorption spectra, implying that fluorescence originates from DtBuCzB produced by photo-dissociation; the subsequent in situ re-binding was observed with nanosecdon transient absorption spectroscopy. No photo-dissociation was observed for the NHC adduct. Time-resolved electron paramagnetic resonance (TREPR) spectra show that the triplet states of DABNA-1 and DtBuCzB have similar zero field splitting (ZFS) parameters (D = 1450 MHz). Theoretical studies show that the slow ISC is due to small SOC and weak Herzberg-Teller coupling, although the S1/T1 energy gap is small (0.14 eV), which rationalizes the lack of TADF.

2.
Dalton Trans ; 53(28): 11981-11994, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38963010

ABSTRACT

Herein, we have designed and synthesized two novel BODIPY dimer-based small molecules, denoted as ZMH-1 and ZMH-2, covalently linked and functionalized with triphenylamine (TPA) (ZMH-1) and carbazole (CZ) (ZMH-2) units as the electron donor at the 3- and 5-positions of the BODIPY core, respectively. Their optical and electrochemical properties were investigated. We have fabricated all small molecule bulk heterojunction organic solar cells using these BODIPY-based small molecules as electron donors along with fullerene derivative (PC71BM) and medium bandgap non-fullerene acceptor IDT-TC as electron acceptors. The optimized OSCs based on ZMH-1:PC71BM, ZMH-2:PC71BM, ZMH-1:IDT-IC, and ZMH-2:IDT-IC attain overall PCEs of 8.91%, 6.61%, 11.28%, and 5.48%, respectively. Moreover, when a small amount of PC71BM as guest acceptor is added to the binary host ZMH-1:IDT-TC and ZMH-2:IDT-TC, the ternary OSCs based on ZMH-1 and ZMH-2 reach PCEs of 13.70% and 12.71%, respectively.

3.
Molecules ; 29(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38930856

ABSTRACT

The extract of Dendrobium huoshanense, a traditional Chinese medicinal and food homologous plant belonging to the family Orchidaceae, was previously reported to have hypoglycemic and antioxidant effects. In this study, the direct effects of polysaccharide (DHP) and non-polysaccharide (NDHP) components of D. huoshanense, as well as its water extract (DHWE) were compared with that of metformin (an antidiabetic drug) on the gut microbiota (collected from fecal flora) of rats with streptozotocin-induced type 1 diabetes (T1D) using an in vitro fermentation method. The results showed that DHWE, DHP, and NDHP reduced pH and increased bacterial proliferation and short-chain fatty acid (SCFA) content in fermentation broth. DHWE, DHP, NDHP and metformin promoted the production of acetic and propionic acid, acetic acid, propionic acid and butyric acid, and propionic acid, respectively. DHWE, DHP, and NDHP reduced the abundance of Proteobacteria (subdominant pathogenic bacteria) and increased the abundance of Firmicutes (dominant beneficial gut bacteria). NDHP also reduced the abundance of Bacteroidetes (beneficial and conditional pathogenic). Metformin increased the abundance of Proteobacteria and reduced the abundance of Firmicutes and Bacteroidetes. At the genus level, NDHP promoted the proliferation of Megamonas and Megasphaera and decreased harmful bacteria (e.g., Klebsiella), and DHP increased the abundance of Prevotellaceae (opportunistic and usually harmless). By contrast, metformin increased the abundance of harmful bacteria (e.g., Citrobacter) and reduced the abundance of beneficial bacteria (e.g., Oscillospira). Our study indicates that DHWE, DHP, and NDHP are potentially more beneficial than metformin on the gut microbiota of T1D rats in vitro.


Subject(s)
Dendrobium , Diabetes Mellitus, Type 1 , Fatty Acids, Volatile , Gastrointestinal Microbiome , Metformin , Polysaccharides , Animals , Gastrointestinal Microbiome/drug effects , Metformin/pharmacology , Dendrobium/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Rats , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/microbiology , Fatty Acids, Volatile/metabolism , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Male , Diabetes Mellitus, Experimental/drug therapy
4.
Sci Data ; 11(1): 438, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698068

ABSTRACT

The Bethylidae are the most diverse of Hymenoptera chrysidoid families. As external parasitoids, the bethylids have been widely adopted as biocontrol agents to control insect pests worldwide. Thus far, the genomic information of the family Bethylidae has not been reported yet. In this study, we crystallized into a high-quality chromosome-level genome of ant-like bethylid wasps Sclerodermus sp. 'alternatusi' (Hymenoptera: Bethylidae) using PacBio sequencing as well as Hi-C technology. The assembled S. alternatusi genome was 162.30 Mb in size with a contig N50 size of 3.83 Mb and scaffold N50 size of 11.10 Mb. Totally, 92.85% assembled sequences anchored to 15 pseudo-chromosomes. A total of 10,204 protein-coding genes were annotated, and 23.01 Mb repetitive sequences occupying 14.17% of genome were pinpointed. The BUSCO results showed that 97.9% of the complete core Insecta genes were identified in the genome, while 97.1% in the gene sets. The high-quality genome of S. alternatusi will not only provide valuable genomic information, but also show insights into parasitoid wasp evolution and bio-control application in future studies.


Subject(s)
Genome, Insect , Wasps , Animals , Wasps/genetics , Chromosomes, Insect/genetics
5.
Anal Chem ; 96(16): 6356-6365, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38588440

ABSTRACT

Renal fibrosis poses a significant threat to individuals suffering from chronic progressive kidney disease. Given the absence of effective medications for treating renal fibrosis, it becomes crucial to assess the extent of fibrosis in real time and explore the development of novel drugs with substantial therapeutic benefits. Due to the accumulation of renal tissue damage and the uncontrolled deposition of fibrotic matrix during the course of the disease, there is an increase in viscosity both intracellularly and extracellularly. Therefore, a viscosity-sensitive near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging probe, BDP-KY, was developed to detect aberrant changes in viscosity during fibrosis. Furthermore, BDP-KY has been applied to screen the effective components of herbal medicine, rhubarb, resulting in the identification of potential antirenal fibrotic compounds such as emodin-8-glucoside and chrysophanol 8-O-glucoside. Ultrasound, PA, and NIRF imaging of a unilateral uretera obstruction mice model show that different concentrations of emodin-8-glucoside and chrysophanol 8-O-glucoside effectively reduce viscosity levels during the renal fibrosis process. The histological results showed a significant decrease in fibrosis factors α-smooth muscle actin and collagen deposition. Combining these findings with their pharmacokinetic characteristics, these compounds have the potential to fill the current market gap for effective antirenal fibrosis drugs. This study demonstrates the potential of BDP-KY in the evaluation of renal fibrosis, and the two identified active components from rhubarb hold great promise for the treatment of renal fibrosis.

6.
Drug Des Devel Ther ; 18: 1189-1198, 2024.
Article in English | MEDLINE | ID: mdl-38645990

ABSTRACT

Purpose: Postoperative nausea and vomiting (PONV) frequently occur in patients after surgery. In this study, the authors investigated whether perioperative S-ketamine infusion could decrease the incidence of PONV in patients undergoing video-assisted thoracoscopic surgery (VATS) lobectomy. Patients and Methods: This prospective, randomized, double-blinded, controlled study was conducted a total of 420 patients from September 2021 to May 2023 at Xuzhou Central Hospital in China, who underwent elective VATS lobectomy under general anesthesia with tracheal intubation. The patients were randomly assigned to either the S-ketamine group or the control group. The S-ketamine group received a bolus injection of 0.5 mg/kg S-ketamine and an intraoperative continuous infusion of S-ketamine at a rate of 0.25 mg/kg/h. The control group received an equivalent volume of saline. All patients were equipped with patient-controlled intravenous analgesia (PCIA), with a continuous infusion rate of 0.03 mg/kg/h S-ketamine in the S-ketamine group or 0.03 µg/kg/h sufentanil in the control group. The primary outcome was the incidence of PONV. Secondary outcomes included perioperative opioid consumption, hemodynamics, postoperative pain, and adverse events. Results: The incidence of PONV in the S-ketamine group (9.7%) was significantly lower than in the control group (30.5%). Analysis of perioperative opioid usage revealed that remifentanil usage was 40.0% lower in the S-ketamine group compared to the control group (1414.8 µg vs 2358.2 µg), while sufentanil consumption was 75.2% lower (33.1 µg vs 133.6 µg). The S-ketamine group demonstrated better maintenance of hemodynamic stability. Additionally, the visual analogue scale (VAS) scores on postoperative day 1 (POD-1) and postoperative day 3 (POD-3) were significantly lower in the S-ketamine group. Finally, no statistically significant difference in other postoperative adverse reactions was observed between the two groups. Conclusion: The results of this trial indicate that perioperative S-ketamine infusion can effectively reduce the incidence of PONV in patients undergoing VATS lobectomy.


Subject(s)
Ketamine , Postoperative Nausea and Vomiting , Thoracic Surgery, Video-Assisted , Adult , Aged , Female , Humans , Male , Middle Aged , Double-Blind Method , Ketamine/administration & dosage , Postoperative Nausea and Vomiting/prevention & control , Prospective Studies , Thoracic Surgery, Video-Assisted/adverse effects
7.
Pest Manag Sci ; 80(9): 4297-4305, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38629775

ABSTRACT

BACKGROUND: Saliva has a crucial role in determining the compatibility between piercing-sucking insects and their hosts. The brown planthopper (BPH) Nilaparvata lugens, a notorious pest of rice in East and Southeast Asia, secretes gelling and watery saliva when feeding on rice sap. Nlsalivap-5 (NlSP5) and Nlsalivap-7 (NlSP7) were identified as potential planthopper-specific gelling saliva components, but their biological functions remain unknown. RESULTS: Here, we showed by transcriptomic analyses that NlSP5 and NlSP7 were biasedly expressed in the salivary glands of BPHs. Using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome-editing system, we constructed NlSP5 and NlSP7 homozygous mutants (NlSP5-/- and NlSP7-/-). Electrical penetration graph assay showed that NlSP5-/- and NlSP7-/- mutants exhibited abnormal probing and feeding behaviors. Bioassays revealed that the loss-of-function of NlSP5 and NlSP7 significantly reduced the fitness of BPHs, with extended developmental duration, shortened lifespan, reduced weight, and impaired fecundity and hatching rates. CONCLUSION: These findings deepen our understanding of the BPH-host interaction and may provide potential targets for the management of rice planthoppers. © 2024 Society of Chemical Industry.


Subject(s)
Hemiptera , Insect Proteins , Salivary Proteins and Peptides , Animals , Female , Feeding Behavior , Genetic Fitness , Hemiptera/genetics , Hemiptera/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Oryza , Salivary Proteins and Peptides/genetics , Salivary Proteins and Peptides/metabolism
8.
Viruses ; 16(3)2024 03 20.
Article in English | MEDLINE | ID: mdl-38543841

ABSTRACT

Machine learning (ML) is a key focus in predicting protein mutations and aiding directed evolution. Research on potential virus variants is crucial for vaccine development. In this study, the machine learning software PyPEF was employed to conduct mutation analysis within the receptor-binding domain (RBD) of the Spike glycoprotein of SARS-CoV-2. Over 48,960,000 variants were predicted. Eight prospective variants that could surface in the future underwent modeling and molecular dynamics simulations. The study forecasts that the latest variant, ISOY2P5O1, may potentially emerge around 17 November 2023, with an approximate window of uncertainty of ±22 days. The ISOY8P5O2 variant displayed an increased binding capacity in the dry assay, with a total predicted binding energy of -110.306 kcal/mol. This represents an 8.25% enhancement in total binding energy compared to the original SARS-CoV-2 strain discovered in Wuhan (-101.892 kcal/mol). Reverse research confirmed the structural significance of mutation sites using ML models, particularly in the context of protein folding. The study validated regression methods (SVR, RF, and PLS) with different data structures. This study investigates the effectiveness of the "ML-Guided Design Correctly Predicts Combinatorial Effects Strategy" compared to the "ML-Guided Design Correctly Predicts Natural Evolution Prediction Strategy". To enhance machine learning, we created a timestamping algorithm and two auxiliary programs using advanced techniques to rapidly process extensive data, surpassing batch sequencing capabilities. This study not only advances machine learning in guiding protein evolution but also holds potential for forecasting future viruses and vaccine development.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , Prospective Studies , SARS-CoV-2/genetics , Machine Learning , Mutation , Glycoproteins , Protein Binding
9.
Cell Biol Int ; 48(6): 795-807, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38436106

ABSTRACT

Mitochondrial dysfunction and myocardial remodeling have been reported to be the main underlying molecular mechanisms of doxorubicin-induced cardiotoxicity. SIRT6 is a nicotinamide adenine dinucleotide-dependent enzyme that plays a vital role in cardiac protection against various stresses. Moreover, previous studies have demonstrated that FSTL1 could alleviate doxorubicin-induced cardiotoxicity by inhibiting autophagy. The present study investigated the probable mechanisms of FSTL1 on doxorubicin-induced cardiotoxicity in vivo and in vitro. We confirmed that FSTL1 exerted a pivotal protective role on cardiac tissue in vivo and on doxorubicin-induced cell injury in vitro. Furthermore, FSTL1 can alleviate doxorubicin-induced mitochondrial dysfunction by inhibiting autophagy and apoptosis. Further studies demonstrated that FSTL1 can activate SIRT6 signaling by restoring the SIRT6 protein expression in doxorubicin-induced myocardial injury. SIRT6 activation elevated the protein expression of Nrf2 in doxorubicin-induced H9C2 injury. Treatment with the Nrf2 inhibitor ML385 partially antagonized the cardioprotective role of SIRT6 on doxorubicin-induced autophagy or apoptosis. These results suggested that the protective mechanism of FSTL1 on doxorubicin-induced cardiotoxicity may be related with the inhibition of autophagy and apoptosis, partly through the activation of SIRT6/Nrf2.


Subject(s)
Cardiotoxicity , Follistatin-Related Proteins , Mitochondria , NF-E2-Related Factor 2 , Sirtuins , Animals , Mice , Rats , Apoptosis/drug effects , Autophagy/drug effects , Cardiotoxicity/metabolism , Cardiotoxicity/prevention & control , Cell Line , Doxorubicin/adverse effects , Doxorubicin/toxicity , Follistatin-Related Proteins/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Sirtuins/metabolism
10.
Phys Chem Chem Phys ; 26(3): 1860-1868, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38170855

ABSTRACT

Zinc ion capacitors (ZICs) have shown potential for breaking the energy density ceiling of traditional supercapacitors (SCs) via appropriate device design. Nevertheless, a significant challenge remains in advancing ZIC positive electrode materials with excellent conductivity, high specific capacitance, and reliable cycle stability. A highly attractive option for carbon-based electrode materials is reduced graphene oxide (RGO) due to its vast specific surface area, prominent porosity, and 3D cross-linked frame. However, the tight stacking of RGO sheets driven by van der Waals forces can restrict active sites, decrease specific capacitance, and elevate electrochemical impedance. To overcome these challenges, 3D defective RGO (DRGO) hydrogels were prepared by a metal Co cocatalytic gasification reaction. This method produced mesoporous defects on the surface of RGO hydrogels via a low-temperature hydrothermal self-assembly strategy. The surface of the layer has a wide and uniform distribution, which can offer abundant redox active sites, rich ion transfer channels, and fast reaction kinetics. In this work, 3D DRGO//Zn exhibited a wide operating window (0-1.8 V), high specific capacitance (189.39 F g-1 at 1 A g-1), outstanding energy density (85.23 W h kg-1 at 960.31 W kg-1; 52.36 W h kg-1 at 17454.87 W kg-1), and persistent cycling life (98.86% initial capacitance retention after 10 000 cycles at 10 A g-1). This study emphasizes the device design of ZIC and promising prospects of using 3D DRGO hydrogel as a feasible positive electrode for ZIC.

11.
Cancer Imaging ; 23(1): 118, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38098119

ABSTRACT

BACKGROUND: Postsurgical recurrence is of great concern for papillary thyroid carcinoma (PTC). We aim to investigate the value of computed tomography (CT)-based radiomics features and conventional clinical factors in predicting the recurrence of PTC. METHODS: Two-hundred and eighty patients with PTC were retrospectively enrolled and divided into training and validation cohorts at a 6:4 ratio. Recurrence was defined as cytology/pathology-proven disease or morphological evidence of lesions on imaging examinations within 5 years after surgery. Radiomics features were extracted from manually segmented tumor on CT images and were then selected using four different feature selection methods sequentially. Multivariate logistic regression analysis was conducted to identify clinical features associated with recurrence. Radiomics, clinical, and combined models were constructed separately using logistic regression (LR), support vector machine (SVM), k-nearest neighbor (KNN), and neural network (NN), respectively. Receiver operating characteristic analysis was performed to evaluate the model performance in predicting recurrence. A nomogram was established based on all relevant features, with its reliability and reproducibility verified using calibration curves and decision curve analysis (DCA). RESULTS: Eighty-nine patients with PTC experienced recurrence. A total of 1218 radiomics features were extracted from each segmentation. Five radiomics and six clinical features were related to recurrence. Among the 4 radiomics models, the LR-based and SVM-based radiomics models outperformed the NN-based radiomics model (P = 0.032 and 0.026, respectively). Among the 4 clinical models, only the difference between the area under the curve (AUC) of the LR-based and NN-based clinical model was statistically significant (P = 0.035). The combined models had higher AUCs than the corresponding radiomics and clinical models based on the same classifier, although most differences were not statistically significant. In the validation cohort, the combined models based on the LR, SVM, KNN, and NN classifiers had AUCs of 0.746, 0.754, 0.669, and 0.711, respectively. However, the AUCs of these combined models had no significant differences (all P > 0.05). Calibration curves and DCA indicated that the nomogram have potential clinical utility. CONCLUSIONS: The combined model may have potential for better prediction of PTC recurrence than radiomics and clinical models alone. Further testing with larger cohort may help reach statistical significance.


Subject(s)
Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Cancer, Papillary/surgery , Reproducibility of Results , Retrospective Studies , Tomography, X-Ray Computed , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/surgery
12.
Front Immunol ; 14: 1334886, 2023.
Article in English | MEDLINE | ID: mdl-38283362

ABSTRACT

Background: Natural killer (NK) cells are crucial for tumor prognosis; however, their role in non-small-cell lung cancer (NSCLC) remains unclear. The current detection methods for NSCLC are inefficient and costly. Therefore, radiomics represent a promising alternative. Methods: We analyzed the radiogenomics datasets to extract clinical, radiological, and transcriptome data. The effect of NK cells on the prognosis of NSCLC was assessed. Tumors were delineated using a 3D Slicer, and features were extracted using pyradiomics. A radiomics model was developed and validated using five-fold cross-validation. A nomogram model was constructed using the selected clinical variables and a radiomic score (RS). The CIBERSORTx database and gene set enrichment analysis were used to explore the correlations of NK cell infiltration and molecular mechanisms. Results: Higher infiltration of NK cells was correlated with better overall survival (OS) (P = 0.002). The radiomic model showed an area under the curve of 0.731, with 0.726 post-validation. The RS differed significantly between high and low infiltration of NK cells (P < 0.01). The nomogram, using RS and clinical variables, effectively predicted 3-year OS. NK cell infiltration was correlated with the ICOS and BTLA genes (P < 0.001) and macrophage M0/M2 levels. The key pathways included TNF-α signaling via NF-κB and Wnt/ß-catenin signaling. Conclusions: Our radiomic model accurately predicted NK cell infiltration in NSCLC. Combined with clinical characteristics, it can predict the prognosis of patients with NSCLC. Bioinformatic analysis revealed the gene expression and pathways underlying NK cell infiltration in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Radiomics , Lung Neoplasms/diagnostic imaging , Prognosis , Killer Cells, Natural , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL