ABSTRACT
Thousands of years ago, humans started to use propolis because of its medicinal properties, and modern science has successfully identified several bioactive molecules within this resinous bee product. However, a natural propolis extract which has been removed the adhesive glue and preserved propolis bioactive compounds is urgently needed to maximise the therapeutic opportunities. In this study, a novel ultrafiltrate fraction from Brazilian green propolis, termed P30K, was demonstrated with anti-inflammatory properties, both inâ vitro and inâ vivo. Total flavonoids and total phenolic acids content in P30K were 244.6â mg/g and 275.8â mg/g respectively, while the IC50 value of inhibition of cyclooxygenase-2 (COX-2) was 8.30â µg/mL. The anti-inflammatory activity of P30K was furtherly corroborated in experimental models of lipopolysaccharides (LPS)-induced acute liver and lung injury. Mechanistically, integrated GC-MS and LC-MS based serum metabolomics analysis revealed that P30K modulated citrate cycle (TCA), pyruvate, glyoxylate and dicarboxylate metabolism pathways to inhibit secretion of pro-inflammatory cytokines. Results of network pharmacology and molecular docking suggested that P30K targeted catechol-O-methyltransferases (COMT), 11ß-hydroxysteroid dehydrogenases (HSD11B1), and monoamine oxidases (MAOA and MAOB) to promote cellular metabolomic rewiring. Collectively, our work reveals P30K as an efficient therapeutic agent against inflammatory conditions and its efficacy is related to metabolic rewiring.
Subject(s)
Propolis , Humans , Propolis/pharmacology , Molecular Docking Simulation , Flavonoids/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , BrazilABSTRACT
BACKGROUND: Brazil is exceptionally abundant in medicinal plant resources and has a rich ethnopharmacological history. Brazilian Pharmacopoeia (BP) acts as a national standard that regulates drug quality and has six published editions. Recent genomic approaches have led to a resurgence of interest in herbal drugs. The genomic data of plants has been used for pharmaceutical applications, protecting natural resources, and efficiently regulating the market. However, there are few genomic databases specifically for medicinal plants, and the establishment of a database that focuses on the herbs contained in the BP is urgently required. METHODS: The medicinal plant species included in each edition of the BP were analyzed to understand the evolution of the Brazilian herbal drugs. The data of 82 plants in the BP were collected and categorized into four sections: DNA barcodes, super-barcodes, genomes, and sequencing data. A typical web server architecture pattern was used to build the database and website. Furthermore, the cp-Gs of the Aloe genus in the database were analyzed as an illustration. RESULTS: A new database, the Brazilian Pharmacopoeia Genomic Database (BPGD) was constructed and is now publicly accessible. A BLAST server for species identification and sequence searching with the internal transcribed spacer 2 (ITS2), the intergenic region (psbA-trnH), and the chloroplast genome (cp-G) of Brazilian medicinal plants was also embedded in the BPGD. The database has 753 ITS2 of 76 species, 553 psbA-trnH and 190 genomes (whole genome and chloroplast genome) of 57 species. In addition, it contains 37 genome sequence data sets of 24 species and 616 transcriptome sequence data sets of 34 species and also includes 187 cp-Gs representing 57 medicinal species in the BP. Analyses of the six cp-Gs of three Aloe species identified the variable regions in the cp-Gs. These can be used to identify species and understand the intraspecific relationships. CONCLUSIONS: This study presents the first genomic database of medicinal plants listed in the latest BP. It serves as an efficient platform to obtain and analyze genomic data, accelerate studies regarding Brazilian medicinal plants and facilitate the rational development on their market regulation.
ABSTRACT
Among different types, Chinese propolis (ChPs) and Brazilian green propolis (BrGPs) have been shown to contain multi-functional properties. Despite extensive research in the field, reports comparing propolis from different geographical areas are still limited, compromising our current understanding of the potential therapeutic effect associated with propolis and its derived compounds. Herein, a comparative study between ChPs and BrGPs including their metabolite profile and bioactivities was performed. Interestingly, even when ChPs and BrGPs showed similar anti-inflammatory potential, our results showed that they contained very different levels of ethanol extract, total flavonoids and total phenolic acids and in fact, LC-MS metabolic profiling and pattern recognition could effectively distinguish ChPs and BrGPs. Moreover, all the propolis samples tested showed good anti-oxidant activity and no significant difference of free radical scavenging capacity existed between ChPs and BrGPs. In conclusion, ChPs and BrGPs have a distinct chemome, but their antioxidant and anti-inflammatory activities are similar.