Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Eur J Med Chem ; 275: 116576, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38861808

ABSTRACT

Sepsis can quickly result in fatality for critically ill individuals, while liver damage can expedite the progression of sepsis, necessitating the exploration of new strategies for treating hepatic sepsis. PDE4 has been identified as a potential target for the treatment of liver damage. The scaffold hopping of lead compounds FCPR16 and Z19153 led to the discovery of a novel 7-methoxybenzofuran PDE4 inhibitor 4e, demonstrating better PDE4B (IC50 = 10.0 nM) and PDE4D (IC50 = 15.2 nM) inhibitor activity as a potential anti-hepatic sepsis drug in this study. Compared with FCPR16 and Z19153, 4e displayed improved oral bioavailability (F = 66 %) and longer half-life (t1/2 = 2.0 h) in SD rats, which means it can be more easily administered and has a longer-lasting effect. In the D-GalN/LPS-induced liver injury model, 4e exhibited excellent hepatoprotective activity against hepatic sepsis by decreasing ALT and AST levels and inflammatory infiltrating areas.


Subject(s)
Benzofurans , Galactosamine , Phosphodiesterase 4 Inhibitors , Sepsis , Animals , Humans , Male , Rats , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/chemical synthesis , Chemical and Drug Induced Liver Injury/drug therapy , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Dose-Response Relationship, Drug , Drug Discovery , Galactosamine/pharmacology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Liver/drug effects , Liver/pathology , Molecular Docking Simulation , Molecular Structure , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/chemical synthesis , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/chemical synthesis , Rats, Sprague-Dawley , Sepsis/drug therapy , Structure-Activity Relationship
2.
Chem Biol Interact ; 398: 111090, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38825057

ABSTRACT

Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play pivotal roles in the pathology of cerebral ischemia. In this study, we investigated whether phelligridimer A (PA), an active compound isolated from the medicinal and edible fungus Phellinus igniarius, ameliorates ischemic cerebral injury by restoring mitochondrial function and restricting ER stress. An in vitro cellular model of ischemic stroke-induced neuronal damage was established by exposing HT-22 neuronal cells to oxygen-glucose deprivation/reoxygenation (OGD/R). An in vivo animal model was established in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). The results showed that PA (1-10 µM) dose-dependently increased HT-22 cell viability, reduced OGD/R-induced lactate dehydrogenase release, and reversed OGD/R-induced apoptosis. PA reduced OGD/R-induced accumulation of reactive oxygen species, restored mitochondrial membrane potential, and increased ATP levels. Additionally, PA reduced the expression of the 78-kDa glucose-regulated protein (GRP78) and the phosphorylation of inositol-requiring enzyme-1α (p-IRE1α) and eukaryotic translation-initiation factor 2α (p-eIF2α). PA also inhibited the activation of the mitogen-activated protein kinase (MAPK) pathway in the OGD/R model. Moreover, treatment with PA restored the expression of mitofusin 2 (Mfn-2), a protein linking mitochondria and ER. The silencing of Mfn-2 abolished the protective effects of PA. The results from the animal study showed that PA (3-10 mg/kg) significantly reduced the volume of cerebral infarction and neurological deficits, which were accompanied by an increased level of Mfn-2, and decreased activation of the ER stress in the penumbra of the ipsilateral side after MCAO/R in rats. Taken together, these results indicate that PA counteracts cerebral ischemia-induced injury by restoring mitochondrial function and reducing ER stress. Therefore, PA might be a novel protective agent to prevent ischemia stroke-induced neuronal injury.


Subject(s)
Brain Ischemia , Endoplasmic Reticulum Stress , GTP Phosphohydrolases , Rats, Sprague-Dawley , Reactive Oxygen Species , Reperfusion Injury , Animals , Male , Mice , Rats , Apoptosis/drug effects , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Cell Line , Cell Survival/drug effects , Endoplasmic Reticulum Chaperone BiP/metabolism , Endoplasmic Reticulum Stress/drug effects , Eukaryotic Initiation Factor-2/metabolism , Glucose/metabolism , GTP Phosphohydrolases/metabolism , Heat-Shock Proteins/metabolism , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy
3.
ACS Nano ; 18(21): 13876-13884, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38756047

ABSTRACT

Responsive nanoparticle surfactants (NPSs) can dynamically and reversibly modulate the interfacial interactions between incompatible components, which are essential in the interfacial catalysis, corrosion, and self-assembly of block copolymers (BCPs). However, NPSs with stimuli-responsive behavior often involve tedious chemical synthesis and surface modifications. Herein, we propose a strategy to in situ construct a kind of dynamic and reversible NPSs by the interfacial electrostatic interaction between the negatively charged nanoparticles (NPs) and the positively charged homopolymers. The NPSs assembled at the oil/water interface reduce the interfacial tension and direct the confined assembly of BCP. Meanwhile, the dynamic NPSs can be disassembled by increasing the pH value or introducing competitive electrostatic attractions, which can dynamically and reversibly change the interfacial properties as well as the alignment of polymer chains, enabling BCP microparticles with reversibly switchable lamellar and cylindrical structures. Furthermore, by the introduction of aggregation-induced emission luminogens as tails to the NPSs, the reversible transformation of BCP microparticles can be visualized by fluorescence emission, which is dependent on the nanostructures of microparticles. This work establishes a concept for dynamically manipulating interfacial interactions and reversibly switching BCP microparticles without time-consuming NPS synthesis, showing promising applications in the fabrication of smart materials with switchable structures and properties.

4.
Glia ; 72(9): 1629-1645, 2024 09.
Article in English | MEDLINE | ID: mdl-38785370

ABSTRACT

We have previously shown that phosphodiesterase 4 (PDE4) inhibition protects against neuronal injury in rats following middle cerebral artery occlusion/reperfusion (MCAO/R). However, the effects of PDE4 on brain edema and astrocyte swelling are unknown. In this study, we showed that inhibition of PDE4 by Roflumilast (Roflu) reduced brain edema and brain water content in rats subjected to MCAO/R. Roflu decreased the expression of aquaporin 4 (AQP4), while the levels of phosphorylated protein kinase B (Akt) and forkhead box O3a (FoxO3a) were increased. In addition, Roflu reduced cell volume and the expression of AQP4 in primary astrocytes undergoing oxygen and glucose deprivation/reoxygenation (OGD/R). Consistently, PDE4B knockdown showed similar effects as PDE4 inhibition; and PDE4B overexpression rescued the inhibitory role of PDE4B knockdown on AQP4 expression. We then found that the effects of Roflu on the expression of AQP4 and cell volume were blocked by the Akt inhibitor MK2206. Since neuroinflammation and astrocyte activation are the common events that are observed in stroke, we treated primary astrocytes with interleukin-1ß (IL-1ß). Astrocytes treated with IL-1ß showed decreased AQP4 and phosphorylated Akt and FoxO3a. Roflu significantly reduced AQP4 expression, which was accompanied by increased phosphorylation of Akt and FoxO3a. Furthermore, overexpression of FoxO3a partly reversed the effect of Roflu on AQP4 expression. Our findings suggest that PDE4 inhibition limits ischemia-induced brain edema and astrocyte swelling via the Akt/FoxO3a/AQP4 pathway. PDE4 is a promising target for the intervention of brain edema after cerebral ischemia.


Subject(s)
Aminopyridines , Aquaporin 4 , Astrocytes , Benzamides , Brain Edema , Infarction, Middle Cerebral Artery , Phosphodiesterase 4 Inhibitors , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Aquaporin 4/metabolism , Aquaporin 4/genetics , Astrocytes/metabolism , Astrocytes/drug effects , Reperfusion Injury/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Male , Brain Edema/metabolism , Brain Edema/etiology , Brain Edema/pathology , Aminopyridines/pharmacology , Benzamides/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclopropanes/pharmacology , Forkhead Box Protein O3/metabolism , Rats , Proto-Oncogene Proteins c-akt/metabolism , Cells, Cultured , Brain Ischemia/metabolism , Brain Ischemia/pathology , Disease Models, Animal , Interleukin-1beta/metabolism
5.
Neurosci Lett ; 822: 137643, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38242347

ABSTRACT

Given the established role of nuclear receptor corepressor 1 (NCoR1) in sensing environmental cues and the importance of inflammation in neurodegenerative diseases, elucidation of NCoR1 involvement in neuroinflammation has notable implications. Yet, its regulatory mechanism remains largely unclear. Under in vitro conditions, NCoR1 expression peaked and then decreased at 12 h after lipopolysaccharides (LPS) stimulation in BV2 cells, However, NCoR1 knockdown using si-RNA attenuated microglial inflammation, evident by reduced the levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), phosphorylated-JNK and high mobility group box-1 (HMGB1). Furthermore, NCoR1 suppression could counteract the decline in mitochondrial membrane potential while simultaneously enhancing the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). Under in vivo conditions, microglia-specific NCoR1 knockout (MNKO) mice after LPS injections alleviated the symptoms of anhedonia, diminished autonomic activity and cognitive impairment. Additionally, MNKO mice showed attenuation of microglial activation, downregulated HMGB1 and COX2, and upregulated PGC-1α expression in the cortex. In conclusion, these findings suggest that NCoR1 deficiency leads to a modest reduction in neuroinflammation, possibly attributed to the increased expression of PGC-1α.


Subject(s)
HMGB1 Protein , Neuroinflammatory Diseases , Mice , Animals , Microglia/metabolism , HMGB1 Protein/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Cyclooxygenase 2/metabolism , Inflammation/metabolism , Co-Repressor Proteins/metabolism
6.
Exp Neurol ; 373: 114654, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38104887

ABSTRACT

We have previously demonstrated that treatment with cannabidiol (CBD) ameliorates mitochondrial dysfunction and attenuates neuronal injury in rats following cerebral ischemia. However, the role of CBD in the progression of ischemic stroke-induced inflammation and the molecules involved remain unclear. Here, we found that CBD suppressed the production of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), reduced the activation of microglia, ameliorated mitochondrial deficits, and decreased the phosphorylation of nuclear factor κ-B (NF-κB) in BV-2 cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Cyclin-dependent kinase regulatory subunit 1B (CKS1B) expression was decreased in BV-2 cells following OGD/R and this reduction was blocked by treatment with CBD. Knockdown of CKS1B increased the activation of microglia and enhanced the production of IL-1ß and TNF-α in BV-2 cells treated with CBD. Moreover, CKS1B knockdown exacerbated mitochondrial deficits and increased NF-κB phosphorylation. CBD treatment also ameliorated brain injury, reduced neuroinflammation, and enhanced the protein levels of mitochondrial transcription factor A and CKS1B in rats following middle cerebral artery occlusion/reperfusion. These data identify CKS1B as a novel regulator of neuroinflammation; and reveals its involvement in the anti-inflammatory effects of CBD. Interventions targeting CKS1B expression are potentially promising for treating in ischemic stroke.


Subject(s)
Brain Ischemia , Cannabidiol , Ischemic Stroke , Reperfusion Injury , Stroke , Animals , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Brain Ischemia/metabolism , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Microglia/metabolism , Neuroinflammatory Diseases , NF-kappa B/metabolism , Oxygen/pharmacology , Reperfusion Injury/metabolism , Signal Transduction , Stroke/drug therapy , Stroke/metabolism , Tumor Necrosis Factor-alpha/metabolism
7.
J. physiol. biochem ; 71(4): 601-610, dic. 2015.
Article in English | IBECS | ID: ibc-145714

ABSTRACT

TREK-2 (TWIK-related K+ channel-2), a member of two-pore domain potassium (K2P) channel family, tunes cellular excitability via conducting leak or background currents. In TREK-2, the isoforms generated by alternative translation initiation (ATI) mechanism exhibit large divergence in unitary conductance, but similar in selectivity to K+. Up to now, the structural basis for this similarity in ion selectivity is unknown. Here, we report that externally applied Ba2+ inhibits the currents of TREK-2 in a concentration- and time-dependent manner. The blocking effect is blunted by elevated extracellular K+ or mutation of S4 K+ binding site, which suggests that the inhibitory mechanism of Ba2+ is due to its competitive docking properties within the selectivity filter (SF). Next, we demonstrate that all the ATI isoforms exhibit analogous behaviors upon the application of Ba2+ and alteration of extracellular pH (pHo), which acts on the outer position of the SF. These results strongly support the notion that all the ATI isoforms of TREK-2 possess resembled SF conformation in S4 site and the position defined by pHo, which implicates that neither the role of N-terminus (Nt) nor the unitary conductance is associated with SF conformation. Our findings might help to understand the detail gating mechanism of TREK-2 and K2P channels


Subject(s)
Protein Isoforms/analysis , Peptide Chain Initiation, Translational/physiology , Shaw Potassium Channels/physiology
8.
J. physiol. biochem ; 70(1): 185-191, mar. 2014.
Article in English | IBECS | ID: ibc-121617

ABSTRACT

Mas-related G protein-coupled receptor D (MrgD) is expressed almost exclusively in nociceptive primary sensory neurons and the neurons located in stratum granulosum of skin. More and more evidence suggest that MrgD plays an important role in pain sensation and/or transduction. Recent studies have demonstrated that the receptor is also involved in itch sensation in both mouse and human. In the present study, we identified a robust inward current in MrgD-expressing Xenopusoocytes by using â-alanine, a putative ligand of MrgD. The currents were sensitive to inhibitor of Ca2+-activated chloride channels (CaCCs) and intracellular Ca2+ chelator, suggesting they were produced by endogenous CaCCs. Furthermore, it was demonstrated that upon the application of phospholipase C (PLC) inhibitor, or antisense oligonucleotides of inositol trisphosphate receptor (IP3R), the â-alanine-induced currents were dramatically depressed. However, protein kinase C inhibitor did not display any visible effect on CaCC currents. In summary, our data suggest that the activation of MrgD promotes the open of endogenous CaCCs via Gq-PLC-IP3-Ca2+ pathway. The current findings reveal the functional coupling between MrgD and CaCCs in Xenopus oocytes and also provide a facile model to assay the activity of MrgD


Subject(s)
Animals , Xenopus , Pain/physiopathology , Calcium Channel Blockers/pharmacokinetics , Protective Agents/pharmacokinetics , /methods , Chloride Channels/antagonists & inhibitors , Receptors, Cell Surface/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL