Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Nat Commun ; 15(1): 1055, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316748

ABSTRACT

HIV-associated changes in intestinal microbiota are believed to be important drivers of disease progression. However, the majority of studies have focused on populations in high-income countries rather than in developing regions where HIV burden is greatest. To better understand the impact of HIV on fecal microbiota globally, we compare the fecal microbial community of individuals in the U.S., Uganda, and Botswana. We identify significant bacterial taxa alterations with both treated and untreated HIV infection with a high degree of uniqueness in each cohort. HIV-associated taxa alterations are also significantly different between populations that report men who have sex with men (MSM) behavior and non-MSM populations. Additionally, while we find that HIV infection is consistently associated with higher soluble markers of immune activation, most specific bacterial taxa associated with these markers in each region are not shared and none are shared across all three geographic locations in our study. Our findings demonstrate that HIV-associated changes in fecal microbiota are overall distinct among geographical locations and sexual behavior groups, although a small number of taxa shared between pairs of geographic locations warrant further investigation, highlighting the importance of considering host context to fully assess the impact of the gut microbiome on human health and disease.


Subject(s)
Gastrointestinal Microbiome , HIV Infections , Sexual and Gender Minorities , Male , Humans , Homosexuality, Male , Gastrointestinal Microbiome/physiology , Sexual Behavior , Bacteria
2.
Microbiome ; 11(1): 67, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37004130

ABSTRACT

BACKGROUND: The majority of studies characterizing female genital tract microbiota have focused on luminal organisms, while the presence and impact of tissue-adherent ectocervical microbiota remain incompletely understood. Studies of luminal and tissue-associated bacteria in the gastrointestinal tract suggest that these communities may have distinct roles in health and disease. Here, we performed a multi-omics characterization of paired luminal and tissue samples collected from a cohort of Kenyan female sex workers. RESULTS: We identified a tissue-adherent bacterial microbiome, with a higher alpha diversity than the luminal microbiome, in which dominant genera overall included Gardnerella and Lactobacillus, followed by Prevotella, Atopobium, and Sneathia. About half of the L. iners-dominated luminal samples had a corresponding Gardnerella-dominated tissue microbiome. Broadly, the tissue-adherent microbiome was associated with fewer differentially expressed host genes than the luminal microbiome. Gene set enrichment analysis revealed that L. crispatus-dominated tissue-adherent communities were associated with protein translation and antimicrobial activity, whereas a highly diverse microbial community was associated with epithelial remodeling and pro-inflammatory pathways. Tissue-adherent communities dominated by L. iners and Gardnerella were associated with lower host transcriptional activity. Tissue-adherent microbiomes dominated by Lactobacillus and Gardnerella correlated with host protein profiles associated with epithelial barrier stability, although with a more pro-inflammatory profile for the Gardnerella-dominated microbiome group. Tissue samples with a highly diverse composition had a protein profile representing cell proliferation and pro-inflammatory activity. CONCLUSION: We identified ectocervical tissue-adherent bacterial communities in all study participants of a female sex worker cohort. These communities were distinct from cervicovaginal luminal microbiota in a significant proportion of individuals. We further revealed that bacterial communities at both sites correlated with distinct host gene expression and protein levels. The tissue-adherent bacterial community could possibly act as a reservoir that seed the lumen with less optimal, non-Lactobacillus, bacteria. Video Abstract.


Subject(s)
Microbiota , Sex Workers , Female , Humans , Vagina/microbiology , Kenya , Microbiota/genetics , Bacteria/genetics , Lactobacillus/genetics , RNA, Ribosomal, 16S/genetics , Gene Expression
3.
bioRxiv ; 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38234804

ABSTRACT

Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related species, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the human vaginal microbiota and sequesters OA in a derivative form that only ohyA-harboring organisms can exploit. Finally, OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro model of BV, suggesting a novel approach for treatment.

4.
Sci Rep ; 12(1): 17948, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289360

ABSTRACT

Bacterial vaginosis (BV), the overgrowth of diverse anaerobic bacteria in the vagina, is the most common cause of vaginal symptoms worldwide. BV frequently recurs after antibiotic therapy, and the best probiotic treatments only result in transient changes from BV-associated states to "optimal" communities dominated by a single species of Lactobacillus. Therefore, additional treatment strategies are needed to durably alter vaginal microbiota composition for patients with BV. Vaginal microbiota transplantation (VMT), the transfer of vaginal fluid from a healthy person with an optimal vaginal microbiota to a recipient with BV, has been proposed as one such alternative. However, VMT carries potential risks, necessitating strict safety precautions. Here, we present an FDA-approved donor screening protocol and detailed methodology for donation collection, storage, screening, and analysis of VMT material. We find that Lactobacillus viability is maintained for over six months in donated material stored at - 80 °C without glycerol or other cryoprotectants. We further show that species-specific quantitative PCR for L. crispatus and L. iners can be used as a rapid initial screening strategy to identify potential donors with optimal vaginal microbiomes. Together, this work lays the foundation for designing safe, reproducible trials of VMT as a treatment for BV.


Subject(s)
Microbiota , Vaginosis, Bacterial , Female , Humans , Glycerol , Vagina/microbiology , Vaginosis, Bacterial/microbiology , Lactobacillus , Anti-Bacterial Agents
5.
Sci Rep ; 12(1): 16187, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36171447

ABSTRACT

Vaginal microbiota have been shown to be a modifier of protection offered by topical tenofovir in preventing HIV infection in women, an effect not observed with oral tenofovir-based pre-exposure prophylaxis (PrEP). It remains unclear whether PrEP can influence the vaginal microbiota composition. This study investigated the impact of daily oral tenofovir disoproxil fumarate in combination with emtricitabine for PrEP on the vaginal microbiota in South African women. At baseline, Lactobacillus iners or Gardnerella vaginalis dominant vaginal communities were observed in the majority of participants. In cross sectional analysis, vaginal microbiota were not affected by the initiation and use of PrEP. Longitudinal analysis revealed that Lactobacillus crispatus-dominant "cervicotypes 1 (CT1)" communities had high probability of remaining stable in PrEP group, but had a higher probability of transitioning to L. iners-dominant CT2 communities in non-PrEP group. L. iners-dominant communities were more likely to transition to communities associated with bacterial vaginosis (BV), irrespective of PrEP or antibiotic use. As expected, BV-linked CTs had a higher probability of transitioning to L. iners than L. crispatus dominant CTs and this shift was not associated with PrEP use.


Subject(s)
HIV Infections , Pre-Exposure Prophylaxis , Vaginosis, Bacterial , Anti-Bacterial Agents , Cross-Sectional Studies , Emtricitabine , Female , HIV Infections/complications , HIV Infections/prevention & control , Humans , South Africa , Tenofovir/therapeutic use , Vagina/microbiology , Vaginosis, Bacterial/microbiology
6.
Nat Microbiol ; 7(3): 434-450, 2022 03.
Article in English | MEDLINE | ID: mdl-35241796

ABSTRACT

Vaginal microbiota composition affects many facets of reproductive health. Lactobacillus iners-dominated microbial communities are associated with poorer outcomes, including higher risk of bacterial vaginosis (BV), compared with vaginal microbiota rich in L. crispatus. Unfortunately, standard-of-care metronidazole therapy for BV typically results in dominance of L. iners, probably contributing to post-treatment relapse. Here we generate an L. iners isolate collection comprising 34 previously unreported isolates from 14 South African women with and without BV and 4 previously unreported isolates from 3 US women. We also report an associated genome catalogue comprising 1,218 vaginal Lactobacillus isolate genomes and metagenome-assembled genomes from >300 women across 4 continents. We show that, unlike L. crispatus, L. iners growth is dependent on L-cysteine in vitro and we trace this phenotype to the absence of canonical cysteine biosynthesis pathways and a restricted repertoire of cysteine-related transport mechanisms. We further show that cysteine concentrations in cervicovaginal lavage samples correlate with Lactobacillus abundance in vivo and that cystine uptake inhibitors selectively inhibit L. iners growth in vitro. Combining an inhibitor with metronidazole promotes L. crispatus dominance of defined BV-like communities in vitro by suppressing L. iners growth. Our findings enable a better understanding of L. iners biology and suggest candidate treatments to modulate the vaginal microbiota to improve reproductive health for women globally.


Subject(s)
Microbiota , Vaginosis, Bacterial , Cysteine/metabolism , Female , Humans , Lactobacillus/genetics , Lactobacillus/metabolism , Male , Metronidazole/metabolism , Metronidazole/pharmacology , Metronidazole/therapeutic use , Vagina/microbiology , Vaginosis, Bacterial/drug therapy , Vaginosis, Bacterial/microbiology
7.
Antimicrob Agents Chemother ; 66(1): e0119621, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34694881

ABSTRACT

Enterococcus faecium is a major cause of clinical infections, often due to multidrug-resistant (MDR) strains. Whole-genome sequencing (WGS) is a powerful tool to study MDR bacteria and their antimicrobial resistance (AMR) mechanisms. In this study, we used WGS to characterize E. faecium clinical isolates and test the feasibility of rules-based genotypic prediction of AMR. Clinical isolates were divided into derivation and validation sets. Phenotypic susceptibility testing for ampicillin, vancomycin, high-level gentamicin, ciprofloxacin, levofloxacin, doxycycline, tetracycline, and linezolid was performed using the Vitek 2 automated system, with confirmation and discrepancy resolution by broth microdilution, disk diffusion, or gradient diffusion when needed. WGS was performed to identify isolate lineage and AMR genotype. AMR prediction rules were derived by analyzing the genotypic-phenotypic relationship in the derivation set. Phylogenetic analysis demonstrated that 88% of isolates in the collection belonged to hospital-associated clonal complex 17. Additionally, 12% of isolates had novel sequence types. When applied to the validation set, the derived prediction rules demonstrated an overall positive predictive value of 98% and negative predictive value of 99% compared to standard phenotypic methods. Most errors were falsely resistant predictions for tetracycline and doxycycline. Further analysis of genotypic-phenotypic discrepancies revealed potentially novel pbp5 and tet(M) alleles that provide insight into ampicillin and tetracycline class resistance mechanisms. The prediction rules demonstrated generalizability when tested on an external data set. In conclusion, known AMR genes and mutations can predict E. faecium phenotypic susceptibility with high accuracy for most routinely tested antibiotics, providing opportunities for advancing molecular diagnostics.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Humans , Microbial Sensitivity Tests , Phylogeny
8.
Front Cell Infect Microbiol ; 11: 733619, 2021.
Article in English | MEDLINE | ID: mdl-34604114

ABSTRACT

The microbiome of the female genital tract (FGT) is closely linked to reproductive health outcomes. Diverse, anaerobe-dominated communities with low Lactobacillus abundance are associated with a number of adverse reproductive outcomes, such as preterm birth, cervical dysplasia, and sexually transmitted infections (STIs), including HIV. Vaginal dysbiosis is associated with local mucosal inflammation, which likely serves as a biological mediator of poor reproductive outcomes. Yet the precise mechanisms of this FGT inflammation remain unclear. Studies in humans have been complicated by confounding demographic, behavioral, and clinical variables. Specifically, hormonal contraception is associated both with changes in the vaginal microbiome and with mucosal inflammation. In this study, we examined the transcriptional landscape of cervical cell populations in a cohort of South African women with differing vaginal microbial community types. We also investigate effects of reproductive hormones on the transcriptional profiles of cervical cells, focusing on the contraceptive depot medroxyprogesterone acetate (DMPA), the most common form of contraception in sub-Saharan Africa. We found that antigen presenting cells (APCs) are key mediators of microbiome associated FGT inflammation. We also found that DMPA is associated with significant transcriptional changes across multiple cell lineages, with some shared and some distinct pathways compared to the inflammatory signature seen with dysbiosis. These results highlight the importance of an integrated, systems-level approach to understanding host-microbe interactions, with an appreciation for important variables, such as reproductive hormones, in the complex system of the FGT mucosa.


Subject(s)
HIV Infections , Microbiota , Premature Birth , Antigen-Presenting Cells , Female , Hormonal Contraception , Humans , Infant, Newborn , Inflammation , Pregnancy , Vagina
10.
Microbiome ; 9(1): 163, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34311774

ABSTRACT

BACKGROUND: Cervicovaginal bacterial communities composed of diverse anaerobes with low Lactobacillus abundance are associated with poor reproductive outcomes such as preterm birth, infertility, cervicitis, and risk of sexually transmitted infections (STIs), including human immunodeficiency virus (HIV). Women in sub-Saharan Africa have a higher prevalence of these high-risk bacterial communities when compared to Western populations. However, the transition of cervicovaginal communities between high- and low-risk community states over time is not well described in African populations. RESULTS: We profiled the bacterial composition of 316 cervicovaginal swabs collected at 3-month intervals from 88 healthy young Black South African women with a median follow-up of 9 months per participant and developed a Markov-based model of transition dynamics that accurately predicted bacterial composition within a broader cross-sectional cohort. We found that Lactobacillus iners-dominant, but not Lactobacillus crispatus-dominant, communities have a high probability of transitioning to high-risk states. Simulating clinical interventions by manipulating the underlying transition probabilities, our model predicts that the population prevalence of low-risk microbial communities could most effectively be increased by manipulating the movement between L. iners- and L. crispatus-dominant communities. CONCLUSIONS: The Markov model we present here indicates that L. iners-dominant communities have a high probability of transitioning to higher-risk states. We additionally identify transitions to target to increase the prevalence of L. crispatus-dominant communities. These findings may help guide future intervention strategies targeted at reducing bacteria-associated adverse reproductive outcomes among women living in sub-Saharan Africa. Video Abstract.


Subject(s)
Microbiota , Premature Birth , Cross-Sectional Studies , Female , Humans , Infant, Newborn , Lactobacillus , Pregnancy , Reproductive Health , Vagina
11.
PeerJ ; 9: e11574, 2021.
Article in English | MEDLINE | ID: mdl-34178459

ABSTRACT

Many studies investigating the human microbiome-cancer interface have focused on the gut microbiome and gastrointestinal cancers. Outside of human papillomavirus driving cervical cancer, little is known about the relationship between the vaginal microbiome and other gynecological cancers, such as ovarian cancer. In this retrospective study, we investigated the relationship between ovarian cancer, platinum-free interval (PFI) length, and vaginal and gut microbiomes. We observed that Lactobacillus-dominated vaginal communities were less common in women with ovarian cancer, as compared to existing datasets of similarly aged women without cancer. Primary platinum-resistance (PPR) disease is strongly associated with survivability under one year, and we found over one-third of patients with PPR (PFI < 6 months, n = 17) to have a vaginal microbiome dominated by Escherichia (>20% relative abundance), while only one platinum super-sensitive (PFI > 24 months, n = 23) patient had an Escherichia-dominated microbiome. Additionally, L. iners was associated with little, or no, gross residual disease, while other Lactobacillus species were dominant in women with >1 cm gross residual disease. In the gut microbiome, we found patients with PPR disease to have lower phylogenetic diversity than platinum-sensitive patients. The trends we observe in women with ovarian cancer and PPR disease, such as the absence of Lactobacillus and presence of Escherichia in the vaginal microbiome as well as low gut microbiome phylogenetic diversity have all been linked to other diseases and/or pro-inflammatory states, including bacterial vaginosis and autoimmune disorders. Future prospective studies are necessary to explore the translational potential and underlying mechanisms driving these associations.

12.
Curr Biol ; 25(24): 3161-9, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26671671

ABSTRACT

Existing studies characterizing gut microbiome variation in the United States suffer from population ascertainment biases, with individuals of American Indian ancestry being among the most underrepresented. Here, we describe the first gut microbiome diversity study of an American Indian community. We partnered with the Cheyenne and Arapaho (C&A), federally recognized American Indian tribes in Oklahoma, and compared gut microbiome diversity and metabolic function of C&A participants to individuals of non-native ancestry in Oklahoma (NNIs). While the C&A and NNI participants share microbiome features common to industrialized populations, the C&A participants had taxonomic profiles characterized by a reduced abundance of the anti-inflammatory bacterial genus Faecalibacterium, along with a fecal metabolite profile similar to dysbiotic states described for metabolic disorders. American Indians are known to be at elevated risk for metabolic disorders. While many aspects of this health disparity remain poorly understood, our results support the need to further study the microbiome as a contributing factor. As the field of microbiome research transitions to therapeutic interventions, it raises concerns that the continued exclusion and lack of participation of American Indian communities in these studies will further exacerbate health disparities. To increase momentum in fostering these much needed partnerships, it is essential that the scientific community actively engage in and recruit these vulnerable populations in basic research through a strategy that promotes mutual trust and understanding, as outlined in this study.


Subject(s)
Gastrointestinal Microbiome , Indians, North American , Adult , Aged , Aged, 80 and over , Diet , Female , Humans , Male , Metabolome , Middle Aged , Oklahoma , Young Adult
13.
PLoS One ; 7(6): e37105, 2012.
Article in English | MEDLINE | ID: mdl-22685541

ABSTRACT

BACKGROUND: Multiple loci and population genetic methods were employed to study the phylogeographic history of the Patagonian freshwater crab Aegla neuquensis (Aeglidae: Decopoda). This taxon occurs in two large river systems in the Patagonian Steppe, from the foothills of the Andes Mountains east to the Atlantic Ocean. METHODOLOGY/PRINCIPAL FINDINGS: A nuclear phylogeny and multilocus nested clade phylogeographic analysis detected a fragmentation event between the Negro and Chico-Chubut river systems. This event occurred approximately 137 thousand years ago. An isolation-with-migration analysis and maximum-likelihood estimates of gene flow showed asymmetrical exchange of genetic material between these two river systems exclusively in their headwaters. We used information theory to determine the best-fit demographic history between these two river systems under an isolation-with-migration model. The best-fit model suggests that the Negro and the ancestral populations have the same effective population sizes; whereas the Chico-Chubut population is smaller and shows that gene flow from the Chico-Chubut into the Negro is four times higher than in the reverse direction. Much of the Chico-Chubut system appears to have only been recently colonized while the Negro populations appear to have been in place for most of the evolutionary history of this taxon. CONCLUSIONS/SIGNIFICANCE: Due to mitochondrial introgression, three nuclear loci provided different phylogeographic resolution than the three mitochondrial genes for an ancient fragmentation event observed in the nuclear phylogeny. However, the mitochondrial locus provided greater resolution on more recent evolutionary events. Our study, therefore, demonstrates the need to include both nuclear and mitochondrial loci for a more complete understanding of evolutionary histories and associated phylogeographic events. Our results suggest that gene flow between these systems, before and after fragmentation was through periodic paleolakes that formed in the headwaters region. Fragmentation between the Negro and Chico-Chubut systems was driven by the disappearance of these paleolakes during the Patagonian Glaciation.


Subject(s)
Anomura/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Phylogeography/methods , Animal Migration , Animals , Anomura/classification , Argentina , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/classification , Fresh Water , Gene Flow , Genetic Variation , Geography , Haplotypes , Mitochondrial Proteins/classification , Mitochondrial Proteins/genetics , Models, Genetic , Phylogeny , Rivers , Time Factors
14.
Mol Phylogenet Evol ; 64(1): 118-29, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22465485

ABSTRACT

We examine the genetic structure and evolutionary history of the mitten crab Eriocheir sensu stricto in East Asia by employing a genome scan - amplified fragment length polymorphism. Population analysis reveals three divergent clades in Eriocheir s. s., which dominate the East China Sea-Yellow Sea, the Sea of Japan (plus Okinawa) and the South China Sea, respectively, mostly in agreement with our previous mtDNA analysis. With the tropical South China Sea inferred as the origin, the East China Sea-Yellow Sea and the Sea of Japan clades in the north diverged successively from the ancestral clade during the mid-Pleistocene. The divergence of the three clades likely resulted from isolation of the three marginal seas caused by sea level change in the Pleistocene. Two sympatric zones, one of the East China Sea-Yellow Sea and the South China Sea clades in southeast China and the other of the East China Sea-Yellow Sea and the Sea of Japan clades in Vladivostok, are demonstrated to be hybrid zones, with hybridization occurring currently in the former but historically in the latter. Adaptive speciation is observed in the divergence process of the three clades, possibly because of selection from accumulated temperature. Our study indicates that the genetic structure and evolutionary history of Eriocheir s. s. have been primarily affected by Pleistocene glacial cycles, secondarily by divergent selection and drainage isolation, but only minimally by human activities.


Subject(s)
Adaptation, Biological/genetics , Brachyura/genetics , Genetic Speciation , Hybridization, Genetic , Amplified Fragment Length Polymorphism Analysis , Animals , Bayes Theorem , Brachyura/classification , Demography , Asia, Eastern , Genetics, Population , Models, Genetic , Selection, Genetic , Temperature
15.
Mitochondrial DNA ; 22(5-6): 155-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22165826

ABSTRACT

Repetitive DNA sequences not only exist abundantly in eukaryotic nuclear genomes, but also occur as tandem repeats in many animal mitochondrial DNA (mtDNA) control regions. Due to concerted evolution, these repetitive sequences are highly similar or even identical within a genome. When long repetitive regions are the targets of amplification for the purpose of sequencing, multiple amplicons may result if one primer has to be located inside the repeats. Here, we show that, without separating these amplicons by gel purification or cloning, directly sequencing the mitochondrial repeats with the primer outside repetitive region is feasible and efficient. We exemplify it by sequencing the mtDNA control region of the mosquito Aedes albopictus, which harbors typical large tandem DNA repeats. This one-way sequencing strategy is optimal for population surveys.


Subject(s)
DNA, Mitochondrial/genetics , Repetitive Sequences, Nucleic Acid , Sequence Analysis/methods , Aedes/genetics , Animals , Base Sequence , DNA Primers/genetics , Mitochondria/chemistry , Polymerase Chain Reaction/methods
16.
Mol Phylogenet Evol ; 52(1): 45-56, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19236929

ABSTRACT

We examined the impact of Pleistocene glacial cycles on geographical distribution and genetic structure of the mitten crab Eriocheir sensu stricto in East Asia using sequence variation of mitochondrial cytochrome c oxidase I and cytochrome b gene segments. Phylogenies revealed four distinct but shallow structured lineages in Eriocheir s. s. Three lineages dominated the East China Sea-Yellow Sea, the Sea of Japan and the South China Sea on the margins of the region, and one lineage occurred on Okinawa Island. This geographical distribution represents a general phylogeographic pattern in East Asia, which is closely associated with the fluctuations of marginal seas and islands during the Pleistocene. The four lineages are estimated to have diverged during the mid-Pleistocene. Demographic expansions were observed in each lineage, starting within the second-to-latest interglacial period in the marginal sea lineages ( approximately 70-130ka) and within the last glacial period in the Okinawa lineage ( approximately 25-80ka). Expansions have probably taken place northward along the coast of the East China Sea-Yellow Sea, following the rise of sea levels. Centered on the southern Korean Peninsula, expansions have likely occurred northward along the west coast and eastward along the south coast of the Sea of Japan. Each marginal sea has served as a single refugium during glacial periods. Two secondary contact regions were identified, one of the East China Sea-Yellow Sea and South China Sea lineages, and another of the East China Sea-Yellow Sea and Sea of Japan lineages. Phylogeography of Eriocheir s. s. provides insights into the evolutionary history and mechanism for generating biodiversity in East Asia.


Subject(s)
Brachyura/genetics , Evolution, Molecular , Genetics, Population , Phylogeny , Animals , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Geography , Haplotypes , Models, Genetic , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA
17.
Mol Ecol ; 18(5): 904-18, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19207249

ABSTRACT

Quaternary glacial cycles have played an important role in shaping the biodiversity in temperate regions. This is well documented in Northern Hemisphere, but much less understood for Southern Hemisphere. We used mitochondrial DNA and nuclear elongation factor 1α intron sequences to examine the Pleistocene glacial impacts on the phylogeographical pattern of the freshwater crab Aegla alacalufi in Chilean Patagonia. Phylogenetic analyses, which separated the glaciated populations on eastern continent into a north group (seven populations) and a south group (one population), revealed a shallow phylogenetic structure in the north group but a deep one in the non-glaciated populations on western islands, indicating the significant influence of glaciation on these populations. Phylogenies also identified the Yaldad population on Chiloé Island as a potentially unrecognized new species. The non-glaciated populations showed higher among population genetic divergence than the glaciated ones, but lower population genetic diversity was not detected in the latter. The two glaciated groups, which diverged from the non-glaciated populations at ~96,800-29,500 years ago and ~104,200-73,800 years ago, respectively, seem to have different glacial refugia. Unexpectedly, the non-glaciated islands did not serve as refugia for them. Demographic expansion was detected in the glaciated north group, with a constant population increase after the last glacial maximum. Nested clade analyses suggest a possible colonization from western islands to eastern continent. After arriving on the continent and surviving the last glacial period there, populations likely have expanded from high to low altitude, following the flood of melting ice. Aegla alacalufi genetic diversity has been primarily affected by Pleistocene glaciation and minimally by drainage isolation.


Subject(s)
Brachyura/genetics , Fresh Water , Ice Cover , Animals , Bayes Theorem , Chile , DNA, Mitochondrial/genetics , Genetic Variation , Genetics, Population , Geography , Haplotypes/genetics , Likelihood Functions , Phylogeny , Sample Size , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...