Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Membranes (Basel) ; 12(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36135922

ABSTRACT

Solid-contact ion-selective electrodes (SC-ISEs) exhibit great potential in the detection of routine and portable ions which rely on solid-contact (SC) materials for the transduction of ions to electron signals. Carbon-based materials are state-of-the-art SC transducers due to their high electrical double-layer (EDL) capacitance and hydrophobicity. However, researchers have long searched for ways to enhance the interfacial capacitance in order to improve the potential stability. Herein, three representative carbon-based SC materials including nitrogen-doped mesoporous carbon (NMC), reduced graphene oxide (RGO), and carbon nanotubes (CNT) were compared. The results disclose that the NMC has the highest EDL capacitance owing to its mesopore structure and N-doping while maintaining high hydrophobicity so that no obvious water-layer effect was observed. The Ca2+-SC-ISEs based on the SC of NMC exhibited high potential stability compared with RGO and CNT. This work offers a guideline for the development of carbon-material-based SC-ISEs through mesoporous and N-doping engineering to improve the interfacial capacitance. The developed NMC-based solid-contact Ca2+-SC-ISE exhibited a Nernstian slope of 26.3 ± 3.1 mV dec-1 ranging from 10 µM to 0.1 M with a detection limit of 3.2 µM. Finally, a practical application using NMC-based SC-ISEs was demonstrated through Ca2+ ion analysis in mineral water and soil leaching solutions.

SELECTION OF CITATIONS
SEARCH DETAIL