Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
Article in English | MEDLINE | ID: mdl-38722719

ABSTRACT

Point scene instance mesh reconstruction is a challenging task since it requires both scene-level instance segmentation and instance-level mesh reconstruction from partial observations simultaneously. Previous works either adopt a detection backbone or a segmentation one, and then directly employ a mesh reconstruction network to produce complete meshes from incomplete instance point clouds. To further boost the mesh reconstruction quality with both local details and global smoothness, in this work, we propose JIMR, a joint framework with two cascaded stages for semantic and geometry understanding. In the first stage, we propose to perform both instance segmentation and object detection simultaneously. By making both tasks promote each other, this design facilitates subsequent mesh reconstruction by providing more precisely-segmented instance points and better alignment benefiting from predicted complete bounding boxes. In the second stage, we propose a complete-then-reconstruct procedure, where the completion module explicitly disentangles completion from reconstruction, and enables the usage of pre-trained weights of existing powerful completion and reconstruction networks. Moreover, we propose a comprehensive confidence score to filter proposals considering the quality of instance segmentation, bounding box detection, semantic classification, and mesh reconstruction at the same time. Experiments show that our proposed JIMR outperforms state-of-the-art methods regarding instance reconstruction qualitatively and quantitatively.

2.
Vascular ; : 17085381241246312, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656244

ABSTRACT

OBJECTIVES: Assessment of plaque stenosis severity allows better management of carotid source of stroke. Our objective is to create a deep learning (DL) model to segment carotid intima-media thickness and plaque and further automatically calculate plaque stenosis severity on common carotid artery (CCA) transverse section ultrasound images. METHODS: Three hundred and ninety images from 376 individuals were used to train (235/390, 60%), validate (39/390, 10%), and test (116/390, 30%) on a newly proposed CANet model. We also evaluated the model on an external test set of 115 individuals with 122 images acquired from another hospital. Comparative studies were conducted between our CANet model with four state-of-the-art DL models and two experienced sonographers to re-evaluate the present model's performance. RESULTS: On the internal test set, our CANet model outperformed the four comparative models with Dice values of 95.22% versus 90.15%, 87.48%, 90.22%, and 91.56% on lumen-intima (LI) borders and 96.27% versus 91.40%, 88.94%, 91.19%, and 92.88% on media-adventitia (MA) borders. On the external test set, our model still produced excellent results with a Dice value of 92.41%. Good consistency of stenosis severity calculation was observed between CANet model and experienced sonographers, with Intraclass Correlation Coefficient (ICC) of 0.927 and 0.702, Pearson's Correlation Coefficient of 0.928 and 0.704 on internal and external test set, respectively. CONCLUSIONS: Our CANet model achieved excellent performance in the segmentation of carotid IMT and plaques as well as automated calculation of stenosis severity.

3.
Photoacoustics ; 38: 100606, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38665366

ABSTRACT

Background: The differentiation between benign and malignant breast tumors extends beyond morphological structures to encompass functional alterations within the nodules. The combination of photoacoustic (PA) imaging and radiomics unveils functional insights and intricate details that are imperceptible to the naked eye. Purpose: This study aims to assess the efficacy of PA imaging in breast cancer radiomics, focusing on the impact of peritumoral region size on radiomic model accuracy. Materials and methods: From January 2022 to November 2023, data were collected from 358 patients with breast nodules, diagnosed via PA/US examination and classified as BI-RADS 3-5. The study used the largest lesion dimension in PA images to define the region of interest, expanded by 2 mm, 5 mm, and 8 mm, for extracting radiomic features. Techniques from statistics and machine learning were applied for feature selection, and logistic regression classifiers were used to build radiomic models. These models integrated both intratumoral and peritumoral data, with logistic regressions identifying key predictive features. Results: The developed nomogram, combining 5 mm peritumoral data with intratumoral and clinical features, showed superior diagnostic performance, achieving an AUC of 0.950 in the training cohort and 0.899 in validation. This model outperformed those based solely on clinical features or other radiomic methods, with the 5 mm peritumoral region proving most effective in identifying malignant nodules. Conclusion: This research demonstrates the significant potential of PA imaging in breast cancer radiomics, especially the advantage of integrating 5 mm peritumoral with intratumoral features. This approach not only surpasses models based on clinical data but also underscores the importance of comprehensive radiomic analysis in accurately characterizing breast nodules.

4.
Curr Med Imaging ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38639284

ABSTRACT

BACKGROUND AND OBJECTIVE: The incidence of stroke is rising, and it is the second major cause of mortality and the third leading cause of disability around the globe. The goal of this study was to rapidly and accurately identify carotid plaques and automatically quantify plaque burden using our automated tracking and segmentation US-video system. METHODS: We collected 88 common carotid artery transection videos (11048 frames) with a history of atherosclerosis or risk factors for atherosclerosis, which were randomly divided into training, test, and validation sets using a 6:3:1 ratio. We first trained different segmentation models to segment the carotid intima and adventitia, and calculate the maximum plaque burden automatically. Finally, we statistically analyzed the plaque burden calculated automatically by the best model and the results of manual labeling by senior sonographers. RESULTS: Of the three Artificial Intelligence (AI) models, the Robust Video Matting (RVM) segmentation model's carotid intima and adventitia Dice Coefficients (DC) were the highest, reaching 0.93 and 0.95, respectively. Moreover, the RVM model has shown the strongest correlation coefficient (0.61±0.28) with senior sonographers, and the diagnostic effectiveness between the RVM model and experts was comparable with paired-t test and Bland-Altman analysis [P= 0.632 and ICC 0.01 (95% CI: -0.24~0.27), respectively]. CONCLUSION: Our findings have indicated that the RVM model can be used in ultrasound carotid video. The RVM model can automatically segment and quantify atherosclerotic plaque burden at the same diagnostic level as senior sonographers. The application of AI to carotid videos offers more precise and effective methods to evaluate carotid atherosclerosis in clinical practice.

5.
J Clin Transl Hepatol ; 12(4): 333-345, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38638378

ABSTRACT

Background and Aims: The global prevalence of nonalcoholic fatty liver disease (NAFLD) is 25%. This study aimed to explore differences in the gut microbial community and blood lipids between normal livers and those affected by NAFLD using 16S ribosomal deoxyribonucleic acid sequencing. Methods: Gut microbiome profiles of 40 NAFLD and 20 non-NAFLD controls were analyzed. Information about four blood lipids and 13 other clinical features was collected. Patients were divided into three groups by ultrasound and FibroScan, those with a normal liver, mild FL (FL1), and moderate-to-severe FL (FL2). FL1 and FL2 patients were divided into two groups, those with either hyperlipidemia or non-hyperlipidemia based on their blood lipids. Potential keystone species within the groups were identified using univariate analysis and a specificity-occupancy plot. Significant difference in biochemical parameters ion NAFLD patients and healthy individuals were identified by detrended correspondence analysis and canonical correspondence analysis. Results: Decreased gut bacterial diversity was found in patients with NAFLD. Firmicutes/Bacteroidetes decreased as NAFLD progressed. Faecalibacterium and Ruminococcus 2 were the most representative fatty-related bacteria. Glutamate pyruvic transaminase, aspartate aminotransferase, and white blood cell count were selected as the most significant biochemical indexes. Calculation of areas under the curve identified two microbiomes combined with the three biochemical indexes that identified normal liver and FL2 very well but performed poorly in diagnosing FL1. Conclusions: Faecalibacterium and Ruminococcus 2, combined with glutamate pyruvic transaminase, aspartate aminotransferase, and white blood cell count distinguished NAFLD. We speculate that regulating the health of gut microbiota may release NAFLD, in addition to providing new targets for clinicians to treat NAFLD.

6.
J Am Chem Soc ; 146(18): 12850-12856, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38648558

ABSTRACT

Acetylene production from mixed α-olefins emerges as a potentially green and energy-efficient approach with significant scientific value in the selective cleavage of C-C bonds. On the Pd(100) surface, it is experimentally revealed that C2 to C4 α-olefins undergo selective thermal cleavage to form surface acetylene and hydrogen. The high selectivity toward acetylene is attributed to the 4-fold hollow sites which are adept at severing the terminal double bonds in α-olefins to produce acetylene. A challenge arises, however, because acetylene tends to stay at the Pd(100) surface. By using the surface alloying methodology with alien Au, the surface Pd d-band center has been successfully shifted away from the Fermi level to release surface-generated acetylene from α-olefins as a gaseous product. Our study actually provides a technological strategy to economically produce acetylene and hydrogen from α-olefins.

7.
iScience ; 27(4): 109403, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38523785

ABSTRACT

We evaluated the diagnostic performance of a multimodal deep-learning (DL) model for ovarian mass differential diagnosis. This single-center retrospective study included 1,054 ultrasound (US)-detected ovarian tumors (699 benign and 355 malignant). Patients were randomly divided into training (n = 675), validation (n = 169), and testing (n = 210) sets. The model was developed using ResNet-50. Three DL-based models were proposed for benign-malignant classification of these lesions: single-modality model that only utilized US images; dual-modality model that used US images and menopausal status as inputs; and multi-modality model that integrated US images, menopausal status, and serum indicators. After 5-fold cross-validation, 210 lesions were tested. We evaluated the three models using the area under the curve (AUC), accuracy, sensitivity, and specificity. The multimodal model outperformed the single- and dual-modality models with 93.80% accuracy and 0.983 AUC. The Multimodal ResNet-50 DL model outperformed the single- and dual-modality models in identifying benign and malignant ovarian tumors.

8.
Clin Breast Cancer ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38548517

ABSTRACT

OBJECTIVES: To develop a nomogram based on photoacoustic imaging (PAI) radiomics and BI-RADs to identify breast cancer (BC) in BI-RADS 4 or 5 lesions detected by ultrasound (US). METHODS: In this retrospective study, 119 females with 119 breast lesions at US and PAI examination were included (January 2022 to December 2022). Patients were divided into the training set (n = 83) or testing set (n = 36) to develop a nomogram to identify BC in BI-RADS 4 or 5 lesions. Relevant factors at clinic, BI-RADS category, and PAI were reviewed. Univariate and multivariate regression was used to evaluate factors for associations with BC. To evaluate the diagnostic performance of nomogram, the area under the curve (AUC) of receiver operating characteristic curve, accuracy, specificity and sensitivity was employed. RESULTS: The nomogram that included BI-RADS category and PAI radiomics score demonstrated a high AUC of 0.925 (95%CI: 0.8467-0.9712) in the training set and 0.926 (95%CI: 0.846-1.000) in the test set. The nomogram also showed significantly better discrimination than the radiomics score (P = .048) or BI-RADS category (P = .009) in the training set. These significant differences were demonstrated in the testing set, outperform the radiomics score (P = .038) and BI-RADS category (P = .013). CONCLUSIONS: The nomogram developed with BI-RADS and PAI radiomics score can effectively identify BC in BI-RADS 4 or 5 lesions. This technique has the potential to further improve early diagnostic accuracy for BC.

9.
Cell Host Microbe ; 32(3): 349-365.e4, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38367621

ABSTRACT

Studies on fecal microbiota transplantation (FMT) have reported inconsistent connections between clinical outcomes and donor strain engraftment. Analyses of subspecies-level crosstalk and its influences on lineage transfer in metagenomic FMT datasets have proved challenging, as single-nucleotide polymorphisms (SNPs) are generally not linked and are often absent. Here, we utilized species genome bin (SGB), which employs co-abundance binning, to investigate subspecies-level microbiome dynamics in patients with autism spectrum disorder (ASD) who had gastrointestinal comorbidities and underwent encapsulated FMT (Chinese Clinical Trial: 2100043906). We found that interactions between donor and recipient microbes, which were overwhelmingly phylogenetically divergent, were important for subspecies transfer and positive clinical outcomes. Additionally, a donor-recipient SGB match was indicative of a high likelihood of strain transfer. Importantly, these ecodynamics were shared across FMT datasets encompassing multiple diseases. Collectively, these findings provide detailed insight into specific microbial interactions and dynamics that determine FMT success.


Subject(s)
Autism Spectrum Disorder , Clostridium Infections , Gastrointestinal Microbiome , Humans , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract , Feces , Treatment Outcome
10.
Soc Sci Med ; 345: 116680, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38394947

ABSTRACT

Previous studies have reported the relationship between educational attainment and attention deficit hyperactivity disorder (ADHD). However, the mechanism of this relationship remains unknown. It is well known that educational attainment correlates with income. Therefore, based on summary data from a genome-wide association study we used two-step Mendelian randomization (MR) to explore the role of income between education and ADHD. The inverse variance weighted (IVW) method was used in our analysis. The IVW results suggested that educational attainment and income were protective factors against ADHD. Educational attainment affects ADHD through income [ADHD: Beta = -0.68, 95% confidence interval (CI) = -0.87, -0.49; female: Beta = -0.87, 95% CI = -1.28, -0.47; male: Beta = -1.01, 95% CI = -1.34, -0.68; childhood: Beta = -0.52, 95% CI = -0.74, -0.30; late-diagnosed: Beta = -0.78, 95% CI = -1.11, -0.47; persistent: Beta = -0.82, 95% CI = -1.33, -0.31]. Income also affected ADHD through educational attainment [female: Beta = -1.08, 95% CI = -1.35, -0.83; male: Beta = -1.16, 95% CI = -1.57, -0.77; persistent: Beta = -1.48, 95% CI = -2.09, -0.94]. In the final analysis, data with heterogeneity were analyzed using IVW random effects results. The mechanism is that income will mediate the relationship between educational attainment and ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Humans , Male , Female , Child , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/genetics , Mediation Analysis , Genome-Wide Association Study , Mendelian Randomization Analysis/methods , Educational Status
11.
BMC Gastroenterol ; 24(1): 81, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395765

ABSTRACT

PURPOSE: To assess the diagnostic performance of Ultrasound Attenuation Analysis (USAT) in the diagnosis and grading of hepatic steatosis in patients with non-alcoholic fatty liver disease (NAFLD) using Controlled Attenuation Parameters (CAP) as a reference. MATERIALS AND METHODS: From February 13, 2023, to September 26, 2023, participants underwent CAP and USAT examinations on the same day. We used manufacturer-recommended CAP thresholds to categorize the stages of hepatic steatosis: stage 1 (mild) - 240 dB/m, stage 2 (moderate) - 265 dB/m, stage 3 (severe) - 295 dB/m. Receiver Operating Characteristic curves were employed to evaluate the diagnostic accuracy of USAT and determine the thresholds for different levels of hepatic steatosis. RESULTS: Using CAP as the reference, we observed that the average USAT value increased with the severity of hepatic steatosis, and the differences in USAT values among the different hepatic steatosis groups were statistically significant (p < 0.05). There was a strong positive correlation between USAT and CAP (r = 0.674, p < 0.0001). When using CAP as the reference, the optimal cut-off values for diagnosing and predicting different levels of hepatic steatosis with USAT were as follows: the cut-off value for excluding the presence of hepatic steatosis was 0.54 dB/cm/MHz (AUC 0.96); for mild hepatic steatosis, it was 0.59 dB/cm/MHz (AUC 0.86); for moderate hepatic steatosis, it was 0.73 dB/cm/MHz (AUC 0.81); and for severe hepatic steatosis, it was 0.87 dB/cm/MHz (AUC 0.87). CONCLUSION: USAT exhibits strong diagnostic performance for hepatic steatosis and shows a high correlation with CAP values.


Subject(s)
Elasticity Imaging Techniques , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Biopsy , ROC Curve , Liver/diagnostic imaging
12.
Ultrasound Med Biol ; 50(5): 722-728, 2024 05.
Article in English | MEDLINE | ID: mdl-38369431

ABSTRACT

OBJECTIVE: Although ultrasound is a common tool for breast cancer screening, its accuracy is often operator-dependent. In this study, we proposed a new automated deep-learning framework that extracts video-based ultrasound data for breast cancer screening. METHODS: Our framework incorporates DenseNet121, MobileNet, and Xception as backbones for both video- and image-based models. We used data from 3907 patients to train and evaluate the models, which were tested using video- and image-based methods, as well as reader studies with human experts. RESULTS: This study evaluated 3907 female patients aged 22 to 86 years. The results indicated that the MobileNet video model achieved an AUROC of 0.961 in prospective data testing, surpassing the DenseNet121 video model. In real-world data testing, it demonstrated an accuracy of 92.59%, outperforming both the DenseNet121 and Xception video models, and exceeding the 76.00% to 85.60% accuracy range of human experts. Additionally, the MobileNet video model exceeded the performance of image models and other video models across all evaluation metrics, including accuracy, sensitivity, specificity, F1 score, and AUC. Its exceptional performance, particularly suitable for resource-limited clinical settings, demonstrates its potential for clinical application in breast cancer screening. CONCLUSIONS: The level of expertise reached by the video models was greater than that achieved by image-based models. We have developed an artificial intelligence framework based on videos that may be able to aid breast cancer diagnosis and alleviate the shortage of experienced experts.


Subject(s)
Breast Neoplasms , Deep Learning , Humans , Female , Breast Neoplasms/diagnostic imaging , Artificial Intelligence , Prospective Studies , Ultrasonography
13.
Biomed Pharmacother ; 172: 116221, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306843

ABSTRACT

The gene therapy attracted more and more attention for the tumor therapy. To obtain a safe gene therapy system, the new gene vectors beyond the virus were developed for a high gene therapy efficiency. The ultrasound mediated gene therapy was safer and the plasmid DNA could be delivered by the microbubbles and combined with the ultrasound to increase the gene transfection efficiency. In this work, the cationic microbubbles decorated with Cyclo(Cys-Arg-Gly-Asp-Lys-Gly-Pro-AspCys) (iRGD peptides) and magnetic Fe3O4 nanoparticles (MBiM) was designed for targeted ultrasound contrast imaging guided gene therapy of tumors. The ultrasound image intensity was dramatically enhanced at the tumor site that received MBiM with the magnet applied, compared to those administrated the non-targeted microbubbles (MBb) or the microbubbles with only one target material on the surface (MBM and MBbi). The pGPU6/GFP/Neo-shAKT2 was used as a sample gene, which down regulate the AKT2 protein expression for the cancer therapy. It illustrated that MBiM/AKT2 had the highest gene transfection efficiency in the studied microbubbles mediated by the ultrasound, leading to the AKT2 protein expression downregulation and the strongest tumor killing effect in vitro and in vivo. In summary, a novel and biocompatible gene delivery platform via MBiM with both the endogenous and external targeting effects for breast cancer theranostics was developed.


Subject(s)
Breast Neoplasms , Microbubbles , Humans , Female , Ultrasonography , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Oncogenes , Magnetic Phenomena
14.
BMC Womens Health ; 24(1): 131, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378562

ABSTRACT

PURPOSE: Breast density has consistently been shown to be an independent risk factor for breast cancer in Western populations; however, few studies have evaluated this topic in Chinese women and there is not yet a unified view. This study investigated the association between mammographic density (MD) and breast cancer risk in Chinese women. METHODS: The PubMed, Cochrane Library, Embase, and Wanfang databases were systematically searched in June 2023 to include all studies on the association between MD and breast cancer risk in Chinese women. A total of 13,977 breast cancer cases from 14 studies were chosen, including 10 case-control/cross-sectional studies, and 4 case-only studies. For case-control/cross-sectional studies, the odds ratios (ORs) of MD were combined using random effects models, and for case-only studies, relative odds ratios (RORs) were combinations of premenopausal versus postmenopausal breast cancer cases. RESULTS: Women with BI-RADS density category II-IV in case-control/cross-sectional studies had a 0.93-fold (95% confidence interval [CI] 0.55, 1.57), 1.08-fold (95% CI 0.40, 2.94), and 1.24-fold (95% CI 0.42, 3.69) higher risk compared to women with the lowest density category. Combined RORs for premenopausal versus postmenopausal women in case-only studies were 3.84 (95% CI 2.92, 5.05), 22.65 (95% CI 7.21, 71.13), and 42.06 (95% CI 4.22, 419.52), respectively, for BI-RADS density category II-IV versus I. CONCLUSIONS: For Chinese women, breast cancer risk is weakly associated with MD; however, breast cancer risk is more strongly correlated with mammographic density in premenopausal women than postmenopausal women. Further research on the factors influencing MD in premenopausal women may provide meaningful insights into breast cancer prevention in China.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Breast Density , Mammography , Cross-Sectional Studies , Breast/diagnostic imaging , Risk Factors
15.
Clin Breast Cancer ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38423948

ABSTRACT

BACKGROUND: Hypoxia is a hallmark of breast cancer (BC). Photoacoustic (PA) imaging, based on the use of laser-generated ultrasound (US), can detect oxygen saturation (So2) in the tissues of breast lesion patients. PURPOSE: To measure the oxygenation status of tissue in and on both sides of the lesion in breast lesion participants using a multimodal Photoacoustic/ultrasound (PA/US) imaging system and to determine the correlation between So2 measured by PA imaging and benign or malignant disease. MATERIALS AND METHODS: Multimodal PA/US imaging and gray-scale US (GSUS) of breast lesion was performed in consecutive breast lesion participants imaged in the US Outpatient Clinic between 2022 and 2023. Dual-wavelength PA imaging was used to measure the So2 value inside the lesion and on both sides of the tissue, and to distinguish benign from malignant lesions based on the So2 value. The ability of So2 to distinguish benign from malignant breast lesions was evaluated by the receiver operating characteristic curve (ROC) and the De-Long test. RESULTS: A total of 120 breast lesion participants (median age, 42.5 years) were included in the study. The malignant lesions exhibited lower So2 levels compared to benign lesions (malignant: 71.30%; benign: 83.81%; P < .01). Moreover, PA/US imaging demonstrates superior diagnostic results compared to GSUS, with an area under the curve (AUC) of 0.89 versus 0.70, sensitivity of 89.58% versus 85.42%, and specificity of 86.11% versus 55.56% at the So2 cut-off value of 78.85 (P < .001). The false positive rate in GSUS reduced by 30.75%, and the false negative rate diminished by 4.16% with PA /US diagnosis. Finally, the So2 on both sides tissues of malignant lesions are lower than that of benign lesions (P < .01). CONCLUSION: PA imaging allows for the assessment of So2 within the lesions of breast lesion patients, thereby facilitating a superior distinction between benign and malignant lesions.

16.
Postgrad Med J ; 100(1183): 309-318, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38275274

ABSTRACT

BACKGROUND: The application of photoacoustic imaging (PAI), utilizing laser-induced ultrasound, shows potential in assessing blood oxygenation in breast nodules. However, its effectiveness in distinguishing between malignant and benign nodules remains insufficiently explored. PURPOSE: This study aims to develop nomogram models for predicting the benign or malignant nature of breast nodules using PAI. METHOD: A prospective cohort study enrolled 369 breast nodules, subjecting them to PAI and ultrasound examination. The training and testing cohorts were randomly divided into two cohorts in a ratio of 3:1. Based on the source of the variables, three models were developed, Model 1: photoacoustic-BIRADS+BMI + blood oxygenation, Model 2: BIRADS+Shape+Intranodal blood (Doppler) + BMI, Model 3: photoacoustic-BIRADS+BIRADS+ Shape+Intranodal blood (Doppler) + BMI + blood oxygenation. Risk factors were identified through logistic regression, resulting in the creation of three predictive models. These models were evaluated using calibration curves, subject receiver operating characteristic (ROC), and decision curve analysis. RESULTS: The area under the ROC curve for the training cohort was 0.91 (95% confidence interval, 95% CI: 0.88-0.95), 0.92 (95% CI: 0.89-0.95), and 0.97 (95% CI: 0.96-0.99) for Models 1-3, and the ROC curve for the testing cohort was 0.95 (95% CI: 0.91-0.98), 0.89 (95% CI: 0.83-0.96), and 0.97 (95% CI: 0.95-0.99) for Models 1-3. CONCLUSIONS: The calibration curves demonstrate that the model's predictions agree with the actual values. Decision curve analysis suggests a good clinical application.


Subject(s)
Breast Neoplasms , Nomograms , Photoacoustic Techniques , Humans , Female , Photoacoustic Techniques/methods , Breast Neoplasms/diagnostic imaging , Prospective Studies , Middle Aged , Adult , Ultrasonography, Mammary/methods , ROC Curve , Aged , Predictive Value of Tests , Diagnosis, Differential
17.
Ultrasound Med Biol ; 50(4): 549-556, 2024 04.
Article in English | MEDLINE | ID: mdl-38262885

ABSTRACT

OBJECTIVE: The emerging high-frame-rate vector flow imaging provides a new way of hemodynamic evaluation for complex blood flow. This study was aimed at exploring quantitatively the characteristics of complex flow with turbulence (Tur) index and analyzing flow patterns in atherosclerotic internal carotid artery stenosis (ICAS) using high-frame-rate vector flow imaging. METHODS: This study prospectively included 60 patients with ICAS. Tur values in different segments of stenosis and cardiac phases were compared. Spearman correlation analysis was performed between clinical plaque characteristics with turbulence grading by ln(Tur). Three complex flow patterns were qualitatively drawn on vector flow mode, and the rates of detection of flow patterns in different stenosis groups and ulceration groups were compared. RESULTS: Highly disordered blood flow was observed in the stenotic (Tur [M, QR] = 12.5%, 21.5%) and distal segment (15.4%, 27.2%), particularly during systole (21.0%, 30.7%, 33.3%, 38.7%, p < 0.05). Spearman correlation analysis revealed that stenosis rate was correlated with turbulence grading in the stenotic (ρ = 0.65, p < 0.05) and distal segment (ρ = 0.79, p < 0.05), and ulcer formation was correlated with turbulence grading in the stenotic segment (ρ = 0.58, p < 0.05). The overall rate of detection of three flow patterns was higher in the severe stenosis group (22/22) versus the mild to moderate stenosis group (21/38) (p < 0.001) and in the ulcer group (21/23) versus the non-ulcer group (23/37) (p < 0.001). CONCLUSION: High-frame-rate vector flow imaging was helpful in assessing the severity and characteristics of flow turbulence. Lumen geometric factors could affect flow turbulence and blood flow patterns around the plaque. This would provide important hemodynamic information for the detection of high-risk plaque.


Subject(s)
Carotid Stenosis , Plaque, Atherosclerotic , Humans , Carotid Stenosis/diagnostic imaging , Constriction, Pathologic , Ulcer , Hemodynamics , Carotid Arteries/diagnostic imaging
18.
BMC Med Inform Decis Mak ; 24(1): 1, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38166852

ABSTRACT

BACKGROUND: The application of artificial intelligence (AI) in the ultrasound (US) diagnosis of breast cancer (BCa) is increasingly prevalent. However, the impact of US-probe frequencies on the diagnostic efficacy of AI models has not been clearly established. OBJECTIVES: To explore the impact of using US-video of variable frequencies on the diagnostic efficacy of AI in breast US screening. METHODS: This study utilized different frequency US-probes (L14: frequency range: 3.0-14.0 MHz, central frequency 9 MHz, L9: frequency range: 2.5-9.0 MHz, central frequency 6.5 MHz and L13: frequency range: 3.6-13.5 MHz, central frequency 8 MHz, L7: frequency range: 3-7 MHz, central frequency 4.0 MHz, linear arrays) to collect breast-video and applied an entropy-based deep learning approach for evaluation. We analyzed the average two-dimensional image entropy (2-DIE) of these videos and the performance of AI models in processing videos from these different frequencies to assess how probe frequency affects AI diagnostic performance. RESULTS: The study found that in testing set 1, L9 was higher than L14 in average 2-DIE; in testing set 2, L13 was higher in average 2-DIE than L7. The diagnostic efficacy of US-data, utilized in AI model analysis, varied across different frequencies (AUC: L9 > L14: 0.849 vs. 0.784; L13 > L7: 0.920 vs. 0.887). CONCLUSION: This study indicate that US-data acquired using probes with varying frequencies exhibit diverse average 2-DIE values, and datasets characterized by higher average 2-DIE demonstrate enhanced diagnostic outcomes in AI-driven BCa diagnosis. Unlike other studies, our research emphasizes the importance of US-probe frequency selection on AI model diagnostic performance, rather than focusing solely on the AI algorithms themselves. These insights offer a new perspective for early BCa screening and diagnosis and are of significant for future choices of US equipment and optimization of AI algorithms.


The research on artificial intelligence-assisted breast diagnosis often relies on static images or dynamic videos obtained from ultrasound probes with different frequencies. However, the effect of frequency-induced image variations on the diagnostic performance of artificial intelligence models remains unclear. In this study, we aimed to explore the impact of using ultrasound images with variable frequencies on AI's diagnostic efficacy in breast ultrasound screening. Our approach involved employing a video and entropy-based feature breast network to compare the diagnostic efficiency and average two-dimensional image entropy of the L14 (frequency range: 3.0-14.0 MHz, central frequency 9 MHz), L9 (frequency range: 2.5-9.0 MHz, central frequency 6.5 MHz) linear array probe and L13 (frequency range: 3.6-13.5 MHz, central frequency 8 MHz), and L7 (frequency range: 3-7 MHz, central frequency 4.0 MHz) linear array probes. The results revealed that the diagnostic efficiency of AI models differed based on the frequency of the ultrasound probe. It is noteworthy that ultrasound images acquired with different frequency probes exhibit different average two-dimensional image entropy, while higher average two-dimensional image entropy positively affect the diagnostic performance of the AI model. We concluded that a dataset with higher average two-dimensional image entropy is associated with superior diagnostic efficacy for AI-based breast diagnosis. These findings contribute to a better understanding of how ultrasound image variations impact AI-assisted breast diagnosis, potentially leading to improved breast cancer screening outcomes.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Humans , Female , Entropy , Ultrasonography , Breast Neoplasms/diagnostic imaging , Algorithms
19.
Biomed Opt Express ; 15(1): 59-76, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38223179

ABSTRACT

Hypoxia is a critical tumor microenvironment (TME) component. It significantly impacts tumor growth and metastasis and is known to be a major obstacle for cancer therapy. Integrating hypoxia modulation with imaging-based monitoring represents a promising strategy that holds the potential for enhancing tumor theranostics. Herein, a kind of nanoenzyme Prussian blue (PB) is synthesized as a metal-organic framework (MOF) to load the second near-infrared (NIR-II) small molecule dye IR1061, which could catalyze hydrogen peroxide to produce oxygen and provide a photothermal conversion element for photoacoustic imaging (PAI) and photothermal therapy (PTT). To enhance stability and biocompatibility, silica was used as a coating for an integrated nanoplatform (SPI). SPI was found to relieve the hypoxic nature of the TME effectively, thus suppressing tumor cell migration and downregulating the expression of heat shock protein 70 (HSP70), both of which led to an amplified NIR-II PTT effect in vitro and in vivo, guided by the NIR-II PAI. Furthermore, label-free multi-spectral PAI permitted the real-time evaluation of SPI as a putative tumor treatment. A clinical histological analysis confirmed the amplified treatment effect. Hence, SPI combined with PAI could offer a new approach for tumor diagnosing, treating, and monitoring.

20.
Article in English | MEDLINE | ID: mdl-38261605

ABSTRACT

OBJECTIVES: Rheumatoid arthritis (RA) is characterized by hypoxia in the synovial tissue. While photoacoustic imaging (PA) offers a method to evaluate tissue oxygenation in RA patients, studies exploring the link between extra-synovial tissue of wrist oxygenation and disease activity remain scarce. We aimed to assess synovial oxygenation in RA patients using a multimodal photoacoustic-ultrasound (PA/US) imaging system and establish its correlation with disease activity. METHODS: A retrospective study was conducted on 111 patients with RA and 72 healthy controls from 2022 to 2023. Dual-wavelength PA imaging quantified oxygen saturation (So2) levels in the synovial membrane and peri-wrist region. Oxygenation states were categorised as hyperoxia, intermediate oxygenation, and hypoxia based on So2 values. The association between oxygenation levels and the clinical disease activity index was evaluated using a one-way analysis of variance, complemented by the Kruskal-Wallis test with Bonferroni adjustment. RESULTS: Of the patients with RA, 39 exhibited hyperoxia, 24 had intermediate oxygenation, and 48 had hypoxia in the wrist extra-synovial tissue. All of the control participants exhibited the hyperoxia status. Oxygenation levels in patients with RA correlated with clinical metrics. Patients with intermediate oxygenation had a lower disease activity index compared with those with hypoxia and hyperoxia. CONCLUSION: A significant correlation exists between wrist extra-synovial tissue oxygenation and disease activity in patients with RA.

SELECTION OF CITATIONS
SEARCH DETAIL
...