Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Anal Cell Pathol (Amst) ; 2024: 8753898, 2024.
Article in English | MEDLINE | ID: mdl-39170930

ABSTRACT

Shock wave therapy (SWT) is a new alternative therapy for patients with severe coronary artery disease that improves myocardial ischemic symptoms by delivering low-energy shock wave stimulation to ischaemic myocardium with low-energy pulsed waves. However, the specific mechanism of its protective effect is not fully understood, especially for the protective mechanism in cardiomyocytes after hypoxia/reoxygenation (H/R). We selected a rat H9c2 cardiomyocyte cell line to establish a stable H/R cardiomyocyte injury model by hypoxia/reoxygenation, and then used SWT for therapeutic intervention to explore its cardiomyocyte protective mechanisms. The results showed that SWT significantly increased cell viability and GSH levels while decreasing LDH levels, ROS levels, and MDA levels. SWT also improved mitochondrial morphology and function of cells after H/R. Meanwhile, we found that SWT could increase the expression of GPX4, xCT, and Bcl-2, while decreasing the expression of Bax and cleaved caspase-3, and inhibiting cardiomyocyte apoptosis and ferroptosis. Moreover, this protective effect of SWT on cardiomyocytes could be significantly reversed by knockdown of xCT, a key regulator protein of ferroptosis. In conclusion, our study shows that SWT can attenuate hypoxia-reoxygenation-induced myocardial injury and protect cardiomyocyte function by inhibiting H/R-induced apoptosis and ferroptosis, and this therapy may have important applications in the treatment of clinical myocardial ischemic diseases.


Subject(s)
Apoptosis , Cell Hypoxia , Ferroptosis , Myocytes, Cardiac , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats , Animals , Cell Line , Cell Survival/radiation effects , Reactive Oxygen Species/metabolism , Oxygen/metabolism , Extracorporeal Shockwave Therapy/methods , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/therapy , Myocardial Reperfusion Injury/pathology , Mitochondria/metabolism
2.
ACS Sens ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39172692

ABSTRACT

An amino functionalized paper-based material that utilized amino functionalized polymer particles as sensing probes and adsorption sites was fabricated via internal sizing technology for application in formaldehyde detection and adsorption. A large specific surface area and the porous structure of the paper fibers enable the application of the composite paper-based material as a sensor at low concentrations of primary amine groups. The material reacts with low levels of formaldehyde, resulting in a concentration-based change in the pH, which is rapidly expressed as a color change. After exposure to formaldehyde (0.02 mg/m3) for 10 min, the color of the composite paper-based material changed from pink to brown, demonstrating the high sensitivity of the material, and this transition could be clearly observed using the naked eye. Additionally, the composite paper-based material acts as an adsorbent at a high content of amino groups, owing to a rapid addition reaction with formaldehyde, exhibiting a high adsorption capacity. Considering the high sensitivity, adsorption capacity, and adsorption speed for formaldehyde, the as-developed composite paper-based material exhibits promising application potential in the field of formaldehyde detection and adsorption.

3.
Article in English | MEDLINE | ID: mdl-39173811

ABSTRACT

Antimony (Sb) and its compounds can be harmful to people and are known to cause cancer, so they are a key pollutant to control. This study investigated the influence of antimony on non-enzymatic antioxidants and the blood-brain barrier (BBB) in zebrafish(Danio rerio), a model organism that shares a high degree of genetic similarity with humans. Zebrafish were exposed to different doses of antimony in water for 7, 18, and 30 days. The results indicated that antimony accumulated most in the liver, followed by the gills, flesh, and brain, with the accumulation increasing as the exposure duration extends. Additionally, under identical antimony concentrations, the buildup in the four tissues was positively correlated with the duration of exposure. After 18 days of exposure, the total antioxidant capacity (T-AOC) and endogenous non-enzymatic antioxidants vitamin C (VC) and vitamin E (VE) decreased as a result of antimony ingestion in zebrafish, although cysteine secretion was increased in the liver, gills, and brain. The structural integrity of the BBB was compromised by the elevation of ApoE4 and MMP-9 levels as a result of antimony exposure, which led to the breakdown of the basal lamina, tight junctions, and nerve fibers in the brain. At this injured region, 5-HT and MBP were also able to easily enter and leave the BBB, albeit at variable rates. Additionally, when the antimony exposure level reached 16.58 mg·L-1, antimony penetrated the BBB and bound to erythrocytes, causing their lysis.

6.
Article in English | MEDLINE | ID: mdl-38961530

ABSTRACT

The incidence of thyroid tumors has been increasing yearly over the past decade, making it the fourth highest tumor in women. This places various biological burdens on those affected. Currently, thyroid tumors are primarily diagnosed using percutaneous fine needle aspiration and ultrasound. However, these methods are complex, expensive, and less accurate, and they may fail to detect some thyroid nodules. As an alternative, researchers are focusing on blood-based biomarkers in addition to the traditional diagnostic methods, assisted predominantly by nanomaterials. Early identification of thyroid cancer is crucial as it is highly treatable. Various sensing systems have been developed using nanomaterial-mediated approaches to enhance the detection system. Nanomaterials are effectively applied in biosensors for surface functionalization and are conjugated with biomolecules to improve the interaction with the target analyte. This review discusses nanomaterial-assisted thyroid tumor detection, with a special focus on nanomaterial-based biosensors.

7.
Front Physiol ; 15: 1361719, 2024.
Article in English | MEDLINE | ID: mdl-38989050

ABSTRACT

Objective: This study investigates the efficacy of training methodologies aimed at mitigating asymmetries in lower limb strength and explosiveness among basketball players. Methods: Thirty male university basketball athletes were enrolled in this research. Initial assessments were made regarding their physical attributes, strength, and explosiveness. Subsequently, the participants were randomly allocated into two groups: an experimental group (EG, n = 15) and a control group (CG, n = 15). Over 10 weeks, the EG engaged in a unilateral compound training regimen, incorporating resistance training exercises such as split squats, Bulgarian split squats, box step-ups, and single-leg calf raises (non-dominant leg: three sets of six repetitions; dominant leg: one set of six repetitions) and plyometric drills including lunge jumps, single-leg hops with back foot raise, single-leg lateral jumps, and single-leg continuous hopping (non-dominant leg: three sets of 12 repetitions; dominant leg: one set of 12 repetitions). The CG continued with their standard training routine. Assessments of limb asymmetry and athletic performance were conducted before and after the intervention to evaluate changes. Results: 1) Body morphology assessments showed limb length and circumference discrepancies of less than 3 cm. The initial average asymmetry percentages in the single-leg countermovement jump (SLCMJ) for jump height, power, and impulse were 15.56%, 12.4%, and 4.48%, respectively. 2) Post-intervention, the EG demonstrated a significant reduction in the asymmetry percentages of SLCMJ height and power (p < 0.01), along with improvements in the isometric mid-thigh pull (IMTP) test metrics (p < 0.05). 3) The EG also showed marked enhancements in the double-leg countermovement jump (CMJ) and standing long jump (SLJ) outcomes compared to the CG (p < 0.01), as well as in squat performance (p < 0.05). Conclusion: The 10-week unilateral compound training program effectively reduced the asymmetry in lower limb strength and explosiveness among elite male university basketball players, contributing to increased maximal strength and explosiveness.

8.
Adv Sci (Weinh) ; : e2309058, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007178

ABSTRACT

Rock-climbing robots have significant potential in fieldwork and planetary exploration. However, they currently face limitations such as a lack of stability and adaptability on extreme terrains, slow locomotion, and single functionality. This study introduces a novel multimodal and adaptive rock-climbing robot (MARCBot), which addresses these limitations through spiny grippers that draw inspiration from morpho-functionalities observed in beetles, arboreal birds, and hoofed animals. This hybrid bioinspired design enables high attachment strength, passive adaptability to different terrains, and quick attachment on rock surfaces. The multimodal functionality of the gripper allows for attachment during climbing and support during walking. A novel control strategy using dynamics and quadratic programming (QP) optimizes attachment wrench distribution, reducing cost-of-transport by 20.03% and 6.05% compared to closed-loop inverse kinematic (CLIK) and virtual model control (VMC) methods, respectively. MARCBot achieved climbing speeds of 0.15 m min-1 on a vertical discrete rock surface under gravity and trotting speeds of up to 0.21 m s-1 on various complex terrains. It is the first robot capable of climbing on rock surfaces and trotting in complex terrains without the need for switching end-effectors. This study highlights significant advancements in climbing and multimodal locomotion for robots in extreme environments.

9.
Plants (Basel) ; 13(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39065517

ABSTRACT

In China, saline-alkali lands constitute 5.01% of the total land area, having a significant impact on both domestic and international food production. Rapeseed (Brassica napus L.), as one of the most important oilseed crops in China, has garnered considerable attention due to its potential adaptability to saline conditions. Breeding and improving salt-tolerant varieties is a key strategy for the effective utilization of saline lands. Hence, it is important to conduct comprehensive research into the adaptability and salt tolerance mechanisms of Brassica napus in saline environments as well as to breed novel salt-tolerant varieties. This review summarizes the molecular mechanism of salt tolerance, physiological and phenotypic indexes, research strategies for the screening of salt-tolerant germplasm resources, and genetic engineering tools for salt stress in Brassica napus. It also introduces various agronomic strategies for applying exogenous substances to alleviate salt stress and provide technological tools and research directions for future research on salt tolerance in Brassica napus.

10.
Food Funct ; 15(15): 7865-7882, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38967039

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized primarily by cognitive impairment. Recent investigations have highlighted the potential of nutritional interventions that target the gut-brain axis, such as probiotics and prebiotics, in forestalling the onset of AD. In this study, whole-genome sequencing was employed to identify xylan as the optimal carbon source for the tryptophan metabolism regulating probiotic Clostridium sporogenes (C. sporogenes). Subsequent in vivo studies demonstrated that administration of a synbiotic formulation comprising C. sporogenes (1 × 1010 CFU per day) and xylan (1%, w/w) over a duration of 30 days markedly enhanced cognitive performance and spatial memory faculties in the 5xFAD transgenic AD mouse model. The synbiotic treatment significantly reduced amyloid-ß (Aß) accumulation in the cortex and hippocampus of the brain. Importantly, synbiotic therapy substantially restored the synaptic ultrastructure in AD mice and suppressed neuroinflammatory responses. Moreover, the intervention escalated levels of the microbial metabolite indole-3-propionic acid (IPA) and augmented the relative prevalence of IPA-synthesizing bacteria, Lachnospira and Clostridium, while reducing the dominant bacteria in AD, such as Aquabacterium, Corynebacterium, and Romboutsia. Notably, synbiotic treatment also prevented the disruption of gut barrier integrity. Correlation analysis indicated a strong positive association between gut microbiota-generated IPA levels and behavioral changes. In conclusion, this study demonstrates that synbiotic supplementation significantly improves cognitive and intellectual deficits in 5xFAD mice, which could be partly attributed to enhanced IPA production by gut microbiota. These findings provide a theoretical basis for considering synbiotic therapy as a novel microbiota-targeted approach for the treatment of metabolic and neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Clostridium , Cognitive Dysfunction , Disease Models, Animal , Gastrointestinal Microbiome , Indoles , Mice, Transgenic , Synbiotics , Xylans , Animals , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Mice , Synbiotics/administration & dosage , Indoles/metabolism , Cognitive Dysfunction/therapy , Cognitive Dysfunction/metabolism , Xylans/metabolism , Xylans/pharmacology , Clostridium/metabolism , Male , Amyloid beta-Peptides/metabolism , Humans , Propionates/metabolism , Brain-Gut Axis/physiology
11.
Microbiol Spectr ; 12(8): e0397823, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38990030

ABSTRACT

It is critical to develop quick, accurate, and efficient sterilization for detecting Escherichia coli O157:H7 in order to prevent infections and outbreaks of foodborne illnesses. Herein, we established a colorimetric biosensor with sterilizing properties using copper selenide nanoparticles to detect E. coli O157:H7. The sample was mixed with magnetic nanoprobes and nanozyme probes to form a sandwich structure, and then the unbound nanozyme probes were collected by magnetic separation. Finally, the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate)-hydrogen peroxide (H2O2) reporting system was added for signal amplification. The change from colorless to green can be seen with the naked eye. Under the optimal conditions, the detection range of E. coli O157:H7 was 102-106 CFU/mL, and the detection limit was 0.35 × 102 CFU/mL. The total detection time was 80 minutes, which can be successfully applied to milk and mineral water. In addition, the colorimetric sensor can kill the target bacteria by irradiating it under a 980-nm laser for 5 minutes. In conclusion, this sensor is a promising tool for rapidly detecting foodborne pathogens and promptly eliminating bacteria. IMPORTANCE: Escherichia coli O157:H7 is a major threat to public health. At present, the detection methods for E. coli O157:H7 mainly include traditional bacterial culture, immunology (enzyme-linked immune-sorbent assay) and molecular biology techniques (polymerase chain reaction). These methods have the limitations of professional operation, waste of time and energy, and high cost. Therefore, we have developed a simple, fast, bactericidal colorimetric biosensor to detect E. coli. O157:H7. The entire process was completed in 80 minutes. The method has been successfully applied to milk and mineral water samples with satisfactory results, proving that the method is an effective method for real-time detection and inactivation of bacteria.


Subject(s)
Biosensing Techniques , Colorimetry , Escherichia coli O157 , Food Microbiology , Escherichia coli O157/isolation & purification , Colorimetry/methods , Biosensing Techniques/methods , Food Microbiology/methods , Copper , Milk/microbiology , Animals , Nanoparticles/chemistry , Hydrogen Peroxide/pharmacology
12.
Biochem Biophys Res Commun ; 731: 150363, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39018969

ABSTRACT

Understanding the dynamics of neural networks and their response to external stimuli is crucial for unraveling the mechanisms associated with learning processes. In this study, we hypothesized that electrical stimulation (ES) would lead to significant alterations in the activity patterns of hippocampal neuronal networks and investigated the effects of low-frequency ES on hippocampal neuronal populations using the microelectrode arrays (MEAs). Our findings revealed significant alterations in the activity of hippocampal neuronal networks following low-frequency ES trainings. Post-stimulation, the neural activity exhibited an organized burst firing pattern characterized by increased spike and burst firings, increased synchronization, and enhanced learning behaviors. Analysis of peri-stimulus time histograms (PSTHs) further revealed that low-frequency ES (1Hz) significantly enhanced neural plasticity, thereby facilitating the learning process of cultured neurons, whereas high-frequency ES (>10Hz) impeded this process. Moreover, we observed a substantial increase in correlations and connectivity within neuronal networks following ES trainings. These alterations in network properties indicated enhanced synaptic plasticity and emphasized the positive impact of low-frequency ES on hippocampal neural activities, contributing to the brain's capacity for learning and memory.


Subject(s)
Electric Stimulation , Hippocampus , Learning , Nerve Net , Neuronal Plasticity , Animals , Hippocampus/physiology , Nerve Net/physiology , Learning/physiology , Cells, Cultured , Neuronal Plasticity/physiology , Rats , Neurons/physiology , Action Potentials/physiology , Rats, Sprague-Dawley
13.
Langmuir ; 40(28): 14384-14398, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38950117

ABSTRACT

Laser-assisted electrochemical machining (ECM) is an ideal manufacturing method for Inconel 718 (IN718) because of the method's high efficiency and good surface quality, and the basis for and key to laser-assisted ECM is its anodic electrochemical dissolution behavior. In this study, IN718 in a 10 wt % NaNO3 solution was subjected to innovative electrochemical testing and laser-assisted ECM experiments to investigate its corrosion properties and the passive film characteristics formed on its surface. The passivation-related behaviors and structures of the passive film were investigated based on open-circuit potentials, dynamic polarization, potentiostatic polarization, and electrochemical impedance spectroscopy. It was found that there was obvious active-passive-transpassive transition behavior, and the structure of the passive film in laser-assisted ECM exhibited pores and defects, resulting in weak corrosion resistance, compared with IN718 under ECM without laser irradiation. The chemical composition of the passive film was obtained by X-ray photoelectron spectroscopy. The results showed that the passive film was composed mainly of a mixture of NiO, Ni(OH)2, Cr2O3, CrO3, Fe2O3, α-Fe2O3, α-FeOOH, Nb2O5, NbO, MoO3, MoO2, and TiO2. The passive film formed by laser-assisted ECM was rich in NiO and TiO2 and lacked Cr2O3 and MoO3, which validated its pores and defect structures. A corresponding schematic model was also proposed to characterize the interface structure between the IN718 substrate and the passive film. Laser-assisted ECM tests were performed under different current densities and machining times, and the corrosion morphology of IN718 was identified. Corrosion pits and a loose product layer appeared on the machined surface at low current densities, and the dissolution mechanism was pitting. The quantity and depth of the corrosion pits dispersed on the machined surface clearly decreased as the current density increased. Finally, a quantitative corrosion model was established to characterize the dissolution behavior of IN718 in NaNO3 solution during laser-assisted ECM.

14.
Mikrochim Acta ; 191(8): 480, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046571

ABSTRACT

An original molecular imprinting photoelectrochemical (PEC) sensor for sarcosine detection based on stable lead-free inorganic halide double perovskite Cs2AgBiBr6 is proposed. Cs2AgBiBr6 as a lead-free halide perovskite material possesses several positive optoelectronic properties for PEC analysis, such as long-lived component to the charge-carrier lifetime, and strong absorption of visible light. At the same time, two-dimensional materials also offer excellent electronic and mechanical properties; thus, Bi2O2S was used and combined with Cs2AgBiBr6 to provide a stable and large photocurrent, which also benefits from the  stability of perovskite Cs2AgBiBr6. Based on this novel PEC assay, the detection range for sarcosine was between 0.005 and 5000 ng/mL with a low detection limit of 0.002 ng/mL. This work also improved the adhibition of metal halide perovskite in analytical chemistry field, providing a novel way for other small molecule detection.

16.
Talanta ; 278: 126502, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38968653

ABSTRACT

Antimony (Sb) pollution has raised increasing public concerns and its rapid on-site screening is central for the risk assessment. Herein, we proposed two gel-based methods based on colorimetric diffusive equilibrium in thin films (DET) and surface-enhanced Raman scattering (SERS), for two-dimensional imaging and sensitive detection of Sb(III) by revisiting the phenylfluorone (PhF) complexation reaction. PhF was well dispersed in the polyvinyl alcohol (PVA) hydrogel and reacted with Sb(III) in the DET gel to form a strong PhF-Sb(III) complex. The distribution of Sb(III) was easily visualized at a submillimeter resolution using computer imaging densitometry, with a detection limit (LOD) of ∼100 nmol L-1. Field application in the Sb mine area reveals limited dissolved Sb(III) penetrating the redox barrier below the sediment-water interface by 20 mm in rivers and tailing pond sediments. To improve the detection sensitivity and apply the principle to trace Sb quantification, a SERS platform was established by anchoring PhF on the hydrogel-stabilized Ag nanoparticles via C-O-Ag bonding to specifically detect Raman-inactive Sb(III). Benefiting from the high SERS activity of PhF and enrichment ability of hydrogel, Sb(III) was quantified with a LOD of 1.2-10.7 nmol L-1 depending on the sample volume. The coexisting ions at a 100-fold higher concentration than Sb(III) resulted in only 3.3-10.4 % variation in SERS intensity, indicating a negligible interference on the SERS platform. The platform exhibited a RSD of 6.6-13.1 % and acceptable recoveries for various environmental matrices, highlighting its promise in on-site application.

17.
Int Heart J ; 65(4): 758-769, 2024.
Article in English | MEDLINE | ID: mdl-39085115

ABSTRACT

Abdominal aortic aneurysm (AAA) is characterized by permanent luminal expansion and a high mortality rate due to aortic rupture. Despite the identification of abnormalities in the mevalonate pathway (MVA) in many diseases, including cardiovascular diseases, the potential impact of this pathway on AAA remains unclear. This study aims to investigate whether the expression of the MVA-related enzyme is altered during the progression of angiotensin II (Ang II) -induced AAA.Ang II 28D and Ang II 5D groups were continuously perfused with Ang II for 28 days and 5 days, respectively, and the Sham group was perfused with saline. The general and remodeling characteristics of AAA were determined by biochemical and histological analysis. Alteration of MVA-related enzyme expressions was revealed by western blot and single-cell RNA sequencing (scRNA-seq).The continuous Ang II infusion for 28 days showed significant aorta expansion and arterial remodeling. Although the arterial diameter slightly increased, the aneurysm formation was not found in Ang II induction for 5 days. MVA-related enzyme expression and activation of small GTP-binding proteins were significantly increased after Ang II-induced. As verified by scRNA-seq, the key enzyme gene expression was also higher in Ang II 28D. Similarly, it was detected that the expression levels of the above enzymes and the activity of small G proteins were elevated in the early stage of AAA as induced by Ang II infusion for 5 days.Continuous Ang II infusion-induced abdominal aortic expansion and arterial remodeling were accompanied by altered expression of key enzymes in the MVA.


Subject(s)
Angiotensin II , Aortic Aneurysm, Abdominal , Mevalonic Acid , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/chemically induced , Mevalonic Acid/metabolism , Animals , Male , Vascular Remodeling , Disease Models, Animal , Aorta, Abdominal/metabolism , Aorta, Abdominal/pathology
18.
Small ; : e2402765, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940416

ABSTRACT

Droplet-based electricity generators (DEGs) are increasingly recognized for their potential in converting renewable energy sources. This study explores the interplay of surface hydrophobicity and stickiness in improving DEG efficiency. It find that the high-performance C-WaxDEGs leverage both these properties. Specifically, DEGs incorporating polydimethylsiloxane (PDMS) with carnauba wax (C-wax) exhibit increased output as surface stickiness decreases. Through experimental comparisons, PDMS with 1wt.% C-wax demonstrated a significant power output increase from 0.07 to 1.2 W m- 2, which attribute to the minimized adhesion between water molecules and the polymer surface, achieved by embedding C-wax into PDMS surface to form microstructures. This improvement in DEG performance is notable even among samples with similar surface potentials and contact angles, suggesting that C-wax's primary contribution is in reducing surface stickiness rather than altering other surface properties. The further investigations into the C-WaxDEG variant with 1wt.% C-wax PDMS uncover its potential as a sensor for water quality parameters such as temperature, pH, and heavy metal ion concentration. These findings open avenues for the integration of C-WaxDEGs into flexible electronic devices aimed at environmental monitoring.

19.
MedComm (2020) ; 5(7): e621, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38938285

ABSTRACT

Acute asthma exacerbation refers to the progressive deterioration of asthma symptoms that is always triggered by virus infection represented by respiratory syncytial virus (RSV). After RSV infection, exaggerated Th2-mediated pulmonary inflammation is the critical pathological response of asthmatic patients with acute exacerbation. Significantly, airway epithelial cells, being the primary targets of RSV infection, play a crucial role in controlling the pulmonary inflammatory response by releasing airway epithelial cell-derived exosomes (AEC-Exos), which potentially influence the development of asthma. However, the specific role of AEC-Exos in acute asthma exacerbation after RSV infection remains obscure. The purpose of this study was to determine the distinct function of AEC-Exos in exacerbating acute asthma following RSV infection. Blockade of exosomes by GW reduce the enhanced pulmonary inflammation significantly. Specifically, the enhanced Th2 inflammation was induced by AEC-Exos thorough transportation of hsa-miR-155-5p-Sirtuin 1 (SIRT1) pathway during acute asthma exacerbation. Targeted inhibition of hsa-miR-155-5p blocks the exaggerated Th2 inflammation effectively in mice with acute asthma exacerbation. In summary, our study showed that during acute asthma exacerbation after RSV infection, AEC-Exos promote the enhanced Th2 inflammation through transportation of increased hsa-miR-155-5p, which was mediated partly through SIRT1-mediated pathway. hsa-miR-155-5p is a potential biomarker for early prediction of acute asthma exacerbation.

20.
Mikrochim Acta ; 191(7): 391, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874626

ABSTRACT

An ultra-high sensitivity pH sensor based on vertical organic electrochemical transistors (vOECT) with extended gate was proposed. The vOECT, which exhibited high transconductance (gm), was for the first time used in the preparation of a pH sensor. The extended gate was modified by electrochemical deposition of polyaniline (PANI) using the cyclic voltammetry (CV) technique. Open circuit potential (OCP) measurements were used to optimize the scan rate, showing a super-Nernstian sensitivity at all scan rates. The pH sensor based on vOECT with extended gate was investigated at different pH levels, and it exhibited an ultra-high sensitivity of 3363.6 µA/pH in the pH range 5-9, which was about 36 times greater than the maximum current sensitivity (91 µA/pH) of other transistor-based pH sensors, to the best of our knowledge. This pH sensor performed excellently in terms of reversibility, long-term stability, and selectivity. To confirm the reliability of the pH sensor, we conducted measurements on real samples using this pH sensor and compared the results with those obtained from a standard pH meter. The ultra-high sensitivity pH sensor based on vOECT with extended gate offers a sensitive and promising alternative in environmental monitoring, food safety, chemistry, clinical diagnostics, and bio-sensing applications.

SELECTION OF CITATIONS
SEARCH DETAIL