Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Int J Biol Macromol ; 253(Pt 4): 127029, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37742903

ABSTRACT

Effective separation of lignin macromolecules from the xylose pre-hydrolysates (XPH) during the xylose production, thus optimizing the separation and purification process of xylose, is of great significance for reducing the production costs, achieving the high value-added utilization of lignin and increasing the industrial revenue. In this study, a simple and robust method (pH adjustment) for the separation of lignin from XPH was proposed and systematically compared with the conventional acid-promoted lignin precipitation method. The results showed that the lignin removal ratio (up to 60.34 %) of this simple method was higher than that of the conventional method, and the proposed method eliminated the necessity of heating and specialized equipment, which greatly reduced the separation cost. Meanwhile, this simple method does not destroy the components in XPH (especially xylose), ensuring the yield of the target product. On the other hand, the obtained lignin was nano-scale with less condensed structures, which also possessed small molecular weights with narrow distribution, excellent antioxidant activity (8-14 times higher than commercial antioxidants) and UV protection properties. In conclusion, the proposed simple separation method could effectively separate lignin from XPH at low cost, and the obtained lignin had potential commercial applications, which would further enhance the overall profitability of industrial production.


Subject(s)
Lignin , Xylose , Lignin/chemistry , Xylose/chemistry , Hydrolysis , Alcoholic Beverages
2.
Bioresour Technol ; 385: 129415, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37390929

ABSTRACT

In this work, a green and robust pretreatment which integrated acetic acid-catalyzed hydrothermal and wet mechanical pretreatment, was developed to efficiently produce high yield (up to 40.12%) of xylooligosaccharides and digestible substrates from Caffeoyl Shikimate Esterase down-regulated and control poplar wood. Subsequently, superhigh yield (more than 95%) of glucose and residual lignin were obtained after a moderate enzymatic hydrolysis. The residual lignin fraction exhibited a well-preserved ß-O-4 linkages (42.06/100Ar) and high S/G ratio (6.42). Subsequently, lignin-derived porous carbon was successfully synthesized, and it exhibited a high specific capacitance of 273.8 F g-1 at 1.0 A g-1 and long cycling stability (remained 98.5% after 10,000 cycles at 5.0 A g-1) compared to control poplar wood, demonstrating that special advantage of this genetically-modified poplar in this integrated process. This work developed an energy-saving and eco-friendly pretreatment technology as a waste-free route for converting different lignocellulosic biomass to multiple products.


Subject(s)
Esterases , Lignin , Hydrolysis , Wood
3.
Bioresour Technol ; 380: 129090, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37105263

ABSTRACT

In this work, a rapid one-pot hydrated deep eutectic solvent (DES) pretreatment was proposed to facilitate the conversion of carbohydrates from lignocellulosic biomass to monosaccharides. Specifically, the pure and hydrated DES based on benzyl triethylammonium chloride (BTEAC), formic acid (FA) and water was used to pretreat bamboo shoot shells (BSS) by microwave heating. The pretreated solid residues were enzymatically saccharified to produce fermentable sugars, and the hydrolyzed carbohydrates and lignin remained in the hydrolyzate. The results showed that the yield of monosaccharides from the hydrated DES hydrolyzate (193.7-228.4 g/kg) was significantly higher than that (45.9-66.1 g/kg) of pure DES. The 30% hydrated DES pretreatment achieved the best glucose yield (89.03%) and a total monosaccharides yield of 555.4 g/kg, which corresponded to a conversion ratio of carbohydrates to monosaccharides of 87.0%. The proposed process is a robust method for the efficiently convert carbohydrates from BSS into monosaccharides.


Subject(s)
Carbohydrates , Deep Eutectic Solvents , Lignin/chemistry , Glucose/chemistry , Monosaccharides , Hydrolysis , Biomass , Solvents/chemistry
4.
Bioresour Technol ; 354: 127225, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35477102

ABSTRACT

Bamboo processing residue, which is rich in parenchyma cells, was treated as huge waste in bamboo processing industry, such as reassemble bamboo and bamboo flooring. Herein, autohydrolysis and rapid different deep eutectic solvents (DES) delignification strategy were consecutively performed to remove hemicelluloses and lignin from bamboo processing residue. The xylooligosaccharides (XOS) with high yield (34.35%) was achieved in the autohydrolysis process. Results showed that alkaline DES pretreatment resulted in the highest glucose yield (88.22%) and relatively high delignification rate (83.75%) as well as well-preserved lignin structures. However, the lignin fractions obtained under acidic DES conditions were tending to assemble into lignin nanoparticles (LNPs) and having excellent antioxidant activity as compared to those obtained from alkaline DES system. In brief, the combination of autohydrolysis and rapid DES delignification can achieve orientated fractionation of the components from the industrialized bamboo.


Subject(s)
Deep Eutectic Solvents , Lignin , Biomass , Chemical Fractionation , Hydrolysis , Lignin/chemistry , Solvents/chemistry
5.
Bioresour Technol ; 352: 127065, 2022 May.
Article in English | MEDLINE | ID: mdl-35351557

ABSTRACT

An aspirational pretreatment method for efficient fractionation and tailored valorization of large industrial biomass can ensure the realizability of sustainable biorefinery strategies. In this study, an ultrafast alkaline deep eutectic solvents (DES) pretreatment strategy was developed to efficiently extract the lignin nanoparticles and retain cellulose residues that could be readily enzymatic saccharified to obtain fermentative glucose for the bioenergy production from industrial xylose residue. Results showed that the DES pretreatment had excellent delignification performance and the regenerated DES lignin nanoparticles exhibited well-preserved structures and excellent antioxidant activity, as well as low molecular weights and relatively uniform size distribution, which could facilitate downstream catalytic degradation for production of chemicals and preparation of lignin-based materials. Under the optimal condition (DES pretreatment: 80 °C, 10 min; saccharification: 10 FPU/g, 5 wt%, 100 mg/g Tween 80), the glucose yield of 90.12% could be achieved, which was dramatically increased compared to raw materials.


Subject(s)
Lignin , Xylose , Biomass , Deep Eutectic Solvents , Glucose , Hydrolysis , Lignin/chemistry , Solvents/chemistry
6.
Bioresour Technol ; 341: 125828, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34461401

ABSTRACT

A synergistic pretreatment that realizing effective fractionation and targeted valorization can guarantee the implementability to future biorefinery scenario. In the present study, a stepwise approach using hydrothermal and deep eutectic solvents (DES) pretreatment was developed to preferentially dissociate hemicelluloses and further remove lignin from poplar, while retaining a cellulose-rich substrate that can be easily digested via enzymatic saccharification to obtain glucose. Results showed that the hydrothermal filtrate is mainly composed of xylooligosaccharide (XOS), monosaccharides, byproducts, and xylan-type hemicelluloses, which have homogenous structures and uniform molecular weights distribution as well as excellent antioxidant activity. Subsequent DES pretreatment further removed the lignin barriers, leading to a remarkable increase in the saccharification efficiency from 15.72% to 96.33% under optimum conditions for enzymatic hydrolysis. In short, the integrated pretreatment is effective for dissociating and chemical conversion of poplar wood, which was reasonable to promote the frontier of highly available biorefinery.


Subject(s)
Cellulose , Wood , Biomass , Hydrolysis , Lignin , Polysaccharides , Solvents
7.
Int J Biol Macromol ; 183: 1362-1370, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34000315

ABSTRACT

Ethanol organosolv pretreatment is a green and effective deconstruction process for main components in lignocellulose biomass. Herein, balsa wood was firstly subjected to a modified ethanol/water solution (EWS) pretreatment with different Lewis acids catalysts (AlCl3, CuCl2, FeCl3) at 140-180 °C. The delignification ratios and structural characteristics of the dissociated lignin, enzymatic hydrolysis of cellulose in the pretreated substrates as well as the degradation products from hemicellulose during the pretreatment process were comprehensively investigated. Results showed that dissociation and depolymerization of lignin fragments was robust in AlCl3-catalyzed pretreatment than those by CuCl2 and FeCl3-catalyzed pretreatment. In detail, the results showed that the optimal delignification ratio and removal of the hemicelluloses occurred in AlCl3-catalyzed pretreatment. Moreover, the structural characterizations of lignin fractions by 2D-HSQC, 31P NMR and GPC also revealed that the obtained lignin has the advantages of small and homogeneous molecules as well as abundant functional groups. As a result of adequate removal of hemicellulose and lignin, the enzymatic digestibility of cellulose in the pretreated residue was significantly elevated. In short, the above findings are also in line with the concept of maximizing the utilization of bioresources, which will be beneficial for value-added applications of balsa wood in the biorefinery.


Subject(s)
Cellulose/chemistry , Ethanol/chemistry , Lewis Acids/chemistry , Lignin/chemistry , Biomass , Catalysis , Magnetic Resonance Spectroscopy
8.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 3): o638, 2009 Feb 28.
Article in English | MEDLINE | ID: mdl-21582287

ABSTRACT

The mol-ecular and crystal structures of the title compound, C(16)H(14)FN(3)O(2), are stabilized by intra-molecular N-H⋯O and inter-molecular O-H⋯O hydrogen bonds. The existence of non-classical intra-molecular C-H⋯N hydrogen bonds provides a dihedral angle between the fluoro-substituted benzene and pyrimidinone rings of 7.9 (1)°.

9.
Yi Chuan ; 30(11): 1448-52, 2008 Nov.
Article in Chinese | MEDLINE | ID: mdl-19073554

ABSTRACT

We amplified genomic DNA of the Paramisgurnus dabryanus using the DM degenerate primers and detected a band, approximately 150 bp. After cloned into pMD18-T vector and sequenced, three sequences showed high homology with the DM domain. They were named as PdDmrt1, PdDmrt3, and PdDmrt5. Based on similarities of amino acid sequences of the DM domain, Dmrt gene protein sequences from six vertebrates species were included in a phylogenetic tree. It confirmed the identity of the three PCR products. Our results reveal that Dmrt gene is highly conservative in phylogeny.


Subject(s)
Cypriniformes/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , Amino Acid Sequence , Animals , Base Sequence , Conserved Sequence , Humans , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Polymorphism, Single-Stranded Conformational , Protein Structure, Tertiary , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...