Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Org Chem ; 87(14): 9242-9249, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35795996

ABSTRACT

A facile method for the synthesis of bis-pyrazolo[3,4-b:4',3'-e]pyridines from easily available aromatic aldehydes and pyrazol-5-amines was developed via electrochemistry. The reaction proceeded smoothly under metal and external chemical oxidant-free conditions, giving a variety of bis-pyrazolo[3,4-b:4',3'-e]pyridines in moderate yields.

2.
Nat Commun ; 13(1): 3338, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35680929

ABSTRACT

Designing cost-effective and high-efficiency catalysts to electrolyze water is an effective way of producing hydrogen. Practical applications require highly active and stable hydrogen evolution reaction catalysts working at high current densities (≥1000 mA cm-2). However, it is challenging to simultaneously enhance the catalytic activity and interface stability of these catalysts. Herein, we report a rapid, energy-saving, and self-heating method to synthesize high-efficiency Mo2C/MoC/carbon nanotube hydrogen evolution reaction catalysts by ultrafast heating and cooling. The experiments and density functional theory calculations reveal that numerous Mo2C/MoC hetero-interfaces offer abundant active sites with a moderate hydrogen adsorption free energy ΔGH* (0.02 eV), and strong chemical bonding between the Mo2C/MoC catalysts and carbon nanotube heater/electrode significantly enhances the mechanical stability owing to instantaneous high temperature. As a result, the Mo2C/MoC/carbon nanotube catalyst achieves low overpotentials of 233 and 255 mV at 1000 and 1500 mA cm-2 in 1 M KOH, respectively, and the overpotential shows only a slight change after working at 1000 mA cm-2 for 14 days, suggesting the excellent activity and stability of the high-current-density hydrogen evolution reaction catalyst. The promising activity, excellent stability, and high productivity of our catalyst can fulfil the demands of hydrogen production in various applications.

3.
J Pharm Biomed Anal ; 196: 113896, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33485130

ABSTRACT

Aurantio-obtusin, an anthraquinone isolated from cassiae semen, possesses diverse pharmacological activities, including hypotensive, hypolipidemic and anti-inflammatory effects. However, our previous studies demonstrated that exposure to aurantio-obtusin induced hepatotoxicity, but the mechanisms of the toxic effects remain unknown. The purpose of the present study is to establish a strategy for the metabolite profiling of aurantio-obtusin in normal and liver-injured rats. This study aimed at identifying the in vivo metabolites and the metabolic profiling in rats after oral administration at a dose of aurantio-obtusin (4 and 200 mg/kg) by using an ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and metabolynx™ software. A total of 39 metabolites were detected and 3 of them were compared with standard substances. The results indicated that the principal metabolism pathways of aurantio-obtusin in normal rats were glucuronidation and sulfation, while in rats with liver injury, demethylation, dehydroxylation and reduction were also observed and regarded as new metabolic patterns of aurantio-obtusin. These findings helped us to understand the pharmacological and toxicological mechanisms of aurantio-obtusin. Moreover, this study could help to elucidate the metabolic profiling of other anthraquinones.


Subject(s)
Cassia , Animals , Anthraquinones , Chromatography, High Pressure Liquid , Chromatography, Liquid , Liver , Rats
4.
Biomed Chromatogr ; 35(6): e5064, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33450093

ABSTRACT

Fructus Psoraleae (FP) is commonly used in the treatment of vitiligo, osteoporosis, and other diseases in clinic. As a result, the toxicity caused by FP is frequently encountered in clinical practice; however, the underlying toxicity mechanism remains unclear. The purpose of this study was to investigate the toxic effect of the ethanol extract of FP (EEFP) in rats and to explore the underlying toxic mechanisms using a metabolomics approach. The toxicity was evaluated by hematological indicators, biochemical indicators, and histological changes. In addition, a serum metabolomic method based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight MS (UPLC-Q-TOF-MS) had been established to investigate the hepatorenal toxicity of FP. Multivariate statistical approaches, such as partial least squares discriminant analysis and orthogonal partial least squares discriminant analysis, were built to evaluate the toxic effects of FP and find potential biomarkers and metabolic pathways. Ten endogenous metabolites had been identified and the related metabolic pathways were involved in phospholipid metabolism, amino acid metabolism, purine metabolism, and antioxidant system activities. The results showed that long-term exposure to high-dose EEFP may cause hepatorenal toxicity in rats. Therefore, serum metabolomics can improve the diagnostic efficiency of FP toxicity and make it more accurate and comprehensive.


Subject(s)
Chromatography, High Pressure Liquid/methods , Kidney/drug effects , Liver/drug effects , Plant Extracts/toxicity , Psoralea/chemistry , Animals , Biomarkers/blood , Kidney/pathology , Liver/pathology , Male , Mass Spectrometry , Metabolome/drug effects , Rats , Rats, Sprague-Dawley , Reproducibility of Results
5.
Chin Med ; 16(1): 3, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407692

ABSTRACT

BACKGROUND: OPD and OPD' are the two main active components of Ophiopogon japonicas in Shenmai injection (SMI). Being isomers of each other, they are supposed to have similar pharmacological activities, but the actual situation is complicated. The difference of hemolytic behavior between OPD and OPD' in vivo and in vitro was discovered and reported by our group for the first time. In vitro, only OPD' showed hemolysis reaction, while in vivo, both OPD and OPD' caused hemolysis. In vitro, the primary cause of hemolysis has been confirmed to be related to the difference between physical and chemical properties of OPD and OPD'. In vivo, although there is a possible explanation for this phenomenon, the one is that OPD is bio-transformed into OPD' or its analogues in vivo, the other one is that both OPD and OPD' were metabolized into more activated forms for hemolysis. However, the mechanism of hemolysis in vivo is still unclear, especially the existing literature are still difficult to explain why OPD shows the inconsistent hemolysis behavior in vivo and in vitro. Therefore, the study of hemolysis of OPD and OPD' in vivo is of great practical significance in response to the increase of adverse events of SMI. METHODS: Aiming at the hemolysis in vivo, this manuscript adopted untargeted metabolomics and lipidomics technology to preliminarily explore the changes of plasma metabolites and lipids of OPD- and OPD'-treated rats. Metabolomics and lipidomics analyses were performed on ultra-high performance liquid chromatography (UPLC) system tandem with different mass spectrometers (MS) and different columns respectively. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to screen the differential metabolites and lipids. RESULTS: Both OPD and OPD' groups experienced hemolysis, Changes in endogenous differential metabolites and differential lipids, enrichment of differential metabolic pathways, and correlation analysis of differential metabolites and lipids all indicated that the causes of hemolysis by OPD and OPD' were closely related to the interference of phospholipid metabolism. CONCLUSIONS: This study provided a comprehensive description of metabolomics and lipidomics changes between OPD- and OPD'-treated rats, it would add to the knowledge base of the field, which also provided scientific guidance for the subsequent mechanism research. However, the underlying mechanism require further research.

6.
Stem Cells Dev ; 30(1): 39-48, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33176587

ABSTRACT

A transgenic acute promyelocytic leukemia (APL) murine model established by Michael Bishop by cloning a human PML-RARα cDNA into the hMRP8 expression cassette has been widely used in the all-trans retinoid acid and arsenic preparations for the research of APL. However, in the existing literature, the data of regularity and characteristics of the pathogenesis of this model were still missing, which hinder the development of many studies, especially application of new technologies such as single-cell sequencing. Therefore, in this article, we have made up this part of the missing data using an improved APL murine model. We clarified the effects of different inoculation doses on the onset time, latency, morbidity, life span, and proportion of APL cells in peripheral blood (PB), spleen, bone marrow, and so on. The relationship between the proportion of APL cells in the bone marrow, spleen, and PB and organ histological changes was also revealed. These results were a supplement and refinement of this APL model. It would add to the knowledge base of the field and aid in ensuring that accurate models are used for directed interventions. It also provides a great convenience for the researchers who will carry out similar research.


Subject(s)
Disease Models, Animal , Leukemia, Promyelocytic, Acute/genetics , Oncogene Proteins, Fusion/genetics , Transgenes/genetics , Animals , Bone Marrow/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Flow Cytometry/methods , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Promyelocytic, Acute/blood , Leukemia, Promyelocytic, Acute/pathology , Male , Mice, Transgenic , Spleen/metabolism , Survival Analysis , Time Factors
7.
Oxid Med Cell Longev ; 2020: 8870656, 2020.
Article in English | MEDLINE | ID: mdl-33381274

ABSTRACT

Ophiopogonin D (OPD) and Ophiopogonin D' (OPD') are two bioactive ingredients in Ophiopogon japonicus. Previously published studies have often focused on the therapeutic effects related to OPD's antioxidant capacity but underestimated the cytotoxicity-related side effects of OPD', which may result in unpredictable risks. In this study, we reported another side effect of OPD', hemolysis, and what was unexpected was that this side effect also appeared with OPD. Although hemolysis effects for saponins are familiar to researchers, the hemolytic behavior of OPD or OPD' and the interactions between these two isomers are unique. Therefore, we investigated the effects of OPD and OPD' alone or in combination on the hemolytic behavior in vitro and in vivo and adopted chemical compatibility and proteomics methods to explain the potential mechanism. Meanwhile, to explain the drug-drug interactions (DDIs), molecular modeling was applied to explore the possible common targets. In this study, we reported that OPD' caused hemolysis both in vitro and in vivo, while OPD only caused hemolysis in vivo. We clarified the differences and DDIs in the hemolytic behavior of the two isomers. An analysis of the underlying mechanism governing this phenomenon showed that hemolysis caused by OPD or OPD' was related to the destruction of the redox balance of erythrocytes. In vivo, in addition to the redox imbalance, the proteomics data demonstrated that lipid metabolic disorders and mitochondrial energy metabolism are extensively involved by hemolysis. We provided a comprehensive description of the hemolysis of two isomers in Ophiopogon japonicus, and risk warnings related to hemolysis were presented. Our research also provided a positive reference for the development and further research of such bioactive components.


Subject(s)
Hemolysis/drug effects , Ophiopogon/chemistry , Saponins/pharmacology , Spirostans/pharmacology , Animals , Antioxidants/adverse effects , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Blood Cells/drug effects , Blood Cells/metabolism , Drugs, Chinese Herbal/adverse effects , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Isomerism , Male , Mice , Oxidation-Reduction/drug effects , Proteome/drug effects , Proteome/metabolism , Rabbits , Rats , Rats, Wistar , Risk Assessment , Saponins/adverse effects , Saponins/chemistry , Saponins/isolation & purification , Spirostans/adverse effects , Spirostans/chemistry , Spirostans/isolation & purification , Toxicity Tests, Acute
8.
Front Pharmacol ; 11: 1237, 2020.
Article in English | MEDLINE | ID: mdl-32903457

ABSTRACT

Previous studies revealed the hepatotoxic effect of aurantio-obtusin on rats. The aim of this study was to identify potential biomarkers of urine caused by aurantio-obtusin. Sprague-Dawley (SD) rats with body weight of 0, 4, 40, and 200 mg/kg were orally given aurantio-obtusin for 28 days, and urine was collected for 24 h after the last administration. The urine metabolites in the aurantio-obtusin group and the control group were analyzed by ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). Twenty-three metabolites were identified as potential biomarkers, and 10 of them were up-regulated, including xanthosine, hippuric acid, 5-L-glutamyl-taurine, etc. The other 13 biomarkers were down-regulated, including thymidine, 3-methyldioxyindole, cholic acid, etc. The significant changes of these biomarkers indicated that purine metabolism, taurine and hypotaurine metabolism, primary bile acid biosynthesis, pyrimidine metabolism, and tryptophan metabolism played an important role in the hepatotoxicity of aurantio-obtusin in rats. In this paper, the safety and potential risk of aurantio-obtusin were studied for the first time by combining the toxicity of aurantio-obtusin with the results of urine metabolomics, which provided information for the mechanism of liver injury induced by aurantio-obtusin.

9.
Medicine (Baltimore) ; 99(21): e20460, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32481349

ABSTRACT

To investigate the different expression of epidermal growth factor receptor 1 (EGFR) and human epidermal growth factor receptor 2 (HER2) in gastric cancer based on tumor locations and its impact on patients survival.Gastric cancer is heterogeneous disease, recent years have established a molecular classification and described distribution of molecular subtypes in stomach. However, the difference of EGFR and HER-2 expression among tumor location is still unknown.Between January 2010 and August 2014, 2477 consecutive patients with gastric cancer were treated in our surgery department. The tumor locations were classified into 4 groups: cardia, fundus, corpus, and antrum. Based on tumor locations, the clinicopathologic characteristics, EGFR and HER-2 expression, and follow-up data were analyzed by univariant analysis and Kaplan-Meier analysis retrospectively.There were difference of gender, age, Borrmann type, pathological type, differentiation, T-stage, tumor size, gastrectomy method, and complications among the locations. The positive rate of EGFR expression in fundus was 18.18%, which was lower than cardia (46.21%), corpus (43.62%), and antrum (48.83%) (P < .001). The 5-year survival rate in EGFR positive patients was 50.8%, which was significantly lower than EGFR negative patients (64.0%, P = .021). The positive rate of HER-2 expression in cardia was 48.15%, which was significantly higher than fundus (37.5%), corpus (35.45%), and antrum (38.54%) (P = .009), but HER-2 expression did not correlate with 5-year survive (P = .548).Our results suggest that there exist difference of EGFR and HER-2 expression based on tumor locations, and the distribution of EGFR impact on patients survival. Emphasizing the role of EGFR and HER-2 in the context of location contribute to make appropriate treatment strategy and improve prognosis of gastric cancer.


Subject(s)
ErbB Receptors/analysis , Gastrectomy/statistics & numerical data , Peptide Fragments/analysis , Stomach Neoplasms/mortality , Adult , Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood , China/epidemiology , ErbB Receptors/blood , Female , Gastrectomy/methods , Humans , Male , Middle Aged , Peptide Fragments/blood , Prospective Studies , Retrospective Studies , Stomach Neoplasms/blood , Stomach Neoplasms/epidemiology , Survival Analysis
10.
Molecules ; 24(19)2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31547563

ABSTRACT

Aurantio-obtusin is an anthraquinone derived from Cassia obtusifolia (cassiae semen). It is also used as a tool and a detection index for the identification of cassiae semen, as stipulated by the Chinese Pharmacopoeia. Anthraquinones, the main components in cassiae semen, have been reported to show hepatotoxicity. This study investigates the hepatotoxicity of aurantio-obtusin in male Sprague-Dawley rats. We randomly divided the animals into a blank control group and treated three test groups with different doses of aurantio-obtusin: Low dose (4 mg/kg), medium dose (40 mg/kg), and high dose (200 mg/kg). Each group was treated with aurantio-obtusin for 28 days, whereas the control group was administered an equal volume of 0.5% carboxymethyl cellulose sodium salt (CMC-Na) aqueous solution. Subsequently, we conducted biochemical, hematological, and pathological investigations and determined the weight of different organs. We used serum metabolomics to identify possible biomarkers related to hepatotoxicity. The low-dose group showed no significant liver injury, whereas the medium- and high-dose groups manifested obvious liver injury. Compared with the control group, the test groups showed an increase in alanine transaminase, aspartate transaminase, and alkaline phosphatase levels. The liver organ coefficient also significantly increased. Additionally, we found significant changes in the hematological indices. Metabolomics analysis showed that aurantio-obtusin induced 28 endogenous markers related to liver injury. Our data indicate that aurantio-obtusin induces hepatotoxicity in rat liver in a dose-dependent manner and is mediated by pathways involving bile acids, fatty acids, amino acids, and energy metabolism. In particular, changes in bile acid content during treatment with therapeutic agents containing aurantio-obtusin deserve increased attention.


Subject(s)
Anthraquinones/toxicity , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Liver/drug effects , Metabolomics/methods , Animals , Male , Rats , Rats, Sprague-Dawley
11.
Sci Rep ; 6: 32181, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27558134

ABSTRACT

Three strains of a d-xylose-fermenting yeast species were isolated from the host beetle Dorcus titanus collected from two different localities in Henan Province, Central China. These strains formed two hat-shaped ascospores in conjugated and deliquescent asci. Multilocus phylogenetic analysis that included the nearly complete small subunit (SSU), the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit (LSU) rDNAs, as well as RNA polymerase II largest subunit (RPB1) gene demonstrated that these strains represent a novel yeast species belonging to the genus Scheffersomyces. The phylogenetic analysis based on the nucleotide sequences of the xylose reductase (XYL1) gene supported the view that the new strains could be grouped as a unique species. Although this new species is highly similar to Scheffersomyces stipitis-like yeasts in terms of nrDNA sequences and morphological and physiological characteristics, the species can be clearly differentiated from its close relatives on the basis of the sequences of XYL1 and RPB1. Therefore, a novel yeast species, Scheffersomyces titanus sp. nov., is proposed to accommodate these strains. The type strain is NYNU 14712(T) (CICC 33061(T) = CBS 13926(T)).


Subject(s)
Phylogeny , Saccharomycetales/classification , Saccharomycetales/physiology , Xylose/metabolism , Animals , China , Coleoptera/microbiology , DNA, Ribosomal , Fermentation , RNA Polymerase II/genetics , Spores, Fungal
12.
Zhongguo Zhong Yao Za Zhi ; 41(8): 1504-1510, 2016 Apr.
Article in Chinese | MEDLINE | ID: mdl-28884547

ABSTRACT

To study the effect of aqueous extract of Cassiae Semen on the activity, mRNA and protein expressions of cytochrome P450(CYP450) system in rat liver microsomes, microsomes of rat liver were prepared after the oral administration with aqueous extract of Cassiae Semen for 14 days. The enzyme activity was quantified by Cocktail method. Meanwhile, the mRNA and protein expressions of CYP1A2, CYP2B1, CYP2C11, CYP2D2, CYP2E1 and CYP3A1 in the livers were detected by RT-PCR and Western blot. The result of this experiment was that aqueous extract of Cassiae Semen obviously induced the enzyme activities of CYP1A2, CYP2B1, CYP2C11, CYP2D2, CYP2E1 and CYP3A1. Low dose of aqueous extract of Cassiae Semen significantly reduced the activity of CYP2D2, but the activity of CYP2D2 was significantly induced by middle dose and high dose of aqueous extract of Cassiae Semen. These subtypes were increased in a dose-dependent manner except for CYP3A1. The mRNA levels of CYP1A2, CYP2C11, CYP2D2 and CYP2E1 were also induced in rats treated with aqueous extract of Cassiae Semen, but with no significant effect in CYP2B1 and CYP3A1 mRNA expressions. The protein levels of CYP2C11 and CYP2E1 were also induced in rats treated with aqueous extract of Cassiae Semen, but with no significant difference. Since the enzyme activity, mRNA and protein expressions of CYP450, particularly CYP2C11and2E1subtypes, were induced or inhibited by aqueous extract of Cassiae Semen to varing degrees, suggesting the potential drug-drug interactions should be concerned.


Subject(s)
Cassia/chemistry , Cytochrome P-450 Enzyme System/metabolism , Drugs, Chinese Herbal/pharmacology , Microsomes, Liver/drug effects , Plant Extracts/pharmacology , Animals , Isoenzymes/metabolism , Liver/drug effects , Microsomes, Liver/enzymology , Rats , Rats, Sprague-Dawley
13.
Int J Syst Evol Microbiol ; 65(10): 3580-3585, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26297152

ABSTRACT

Four yeast strains were isolated from the gut of beetles collected on Baotianman Mountain and People's Park of Nanyang in Henan Province, China. These strains produced unconjugated asci with one or two ellipsoidal to elongate ascospores in a persistent ascus. Phylogenetic analysis of the D1/D2 domains of the LSU rRNA gene sequences indicated that the isolates represent two novel sexual species in the Candida/Lodderomyces clade. Candida baotianmanensis sp. nov. was located in a statistically well-supported branch together with Candida maltosa. Candida pseudoviswanathii sp. nov. formed a subclade with its closest relative Candida viswanathii supported by a strong bootstrap value. The two novel species were distinguished from their most closely related described species, Candida maltosa and Candida viswanathii, in the D1/D2 LSU rRNA gene and internal transcribed spacer (ITS) sequences and in phenotypic traits. The type strain of Candida baotianmanensis sp. nov. is NYNU 14719T ( = CBS 13915T = CICC 33052T), and the type strain of Candida pseudoviswanathii sp. nov. is NYNU 14772T ( = CBS 13916T = CICC 33053T). The MycoBank numbers for Candida baotianmanensis sp. nov. and Candida pseudoviswanathii sp. nov. are MB 812621 and MB 812622.


Subject(s)
Candida/classification , Coleoptera/microbiology , Gastrointestinal Tract/microbiology , Phylogeny , Animals , Candida/genetics , Candida/isolation & purification , China , DNA, Fungal/genetics , Molecular Sequence Data , Mycological Typing Techniques , Phenotype , Sequence Analysis, DNA , Spores, Fungal
14.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 33(3): 216-8, 2004 05.
Article in Chinese | MEDLINE | ID: mdl-15179681

ABSTRACT

OBJECTIVE: To investigate the possible role of valproic acid therapy in the development of the weight gain and hyperinsulinemia of epileptic patients. METHODS: The weight and fasting insulin levels were measured in 43 epileptic patients treated with valproic acid (VPA) alone and 39 patients with carbamazepine (CBZ) alone for at last 2 years. The body mass index (BMI) and homeostasis model assessment (HOMA) index were studied in the two groups. RESULT: BMI was higher in the VPA-treated group (23.47+/-1.45) than that in the CBZ-treated group (22.27+/-2.10, P<0.05). Fasting insulin level and HOMA index in the VPA group were also higher [(6.64+/-0.79)mU/L and 1.33+/-0.21] than those in the CBZ group [(5.52+/- 0.52)mU/L, P<0.01; 1.15+/-0.12, P<0.01]. While BMI in the VPA group showed no significant correlation with plasma concentration and dose of valproate. CONCLUSION: VPA therapy is associated with significantly greater weight gain and hyperinsulinemia, suggesting development of insulin resistance.


Subject(s)
Epilepsy/drug therapy , Insulin Resistance , Valproic Acid/adverse effects , Adult , Body Mass Index , Epilepsy/metabolism , Female , Humans , Male , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...