Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Front Genet ; 15: 1421565, 2024.
Article in English | MEDLINE | ID: mdl-39130747

ABSTRACT

Accurate haplotyping facilitates distinguishing allele-specific expression, identifying cis-regulatory elements, and characterizing genomic variations, which enables more precise investigations into the relationship between genotype and phenotype. Recent advances in third-generation single-molecule long read and synthetic co-barcoded read sequencing techniques have harnessed long-range information to simplify the assembly graph and improve assembly genomic sequence. However, it remains methodologically challenging to reconstruct the complete haplotypes due to high sequencing error rates of long reads and limited capturing efficiency of co-barcoded reads. We here present a pipeline, AsmMix, for generating both contiguous and accurate diploid genomes. It first assembles co-barcoded reads to generate accurate haplotype-resolved assemblies that may contain many gaps, while the long-read assembly is contiguous but susceptible to errors. Then two assembly sets are integrated into haplotype-resolved assemblies with reduced misassembles. Through extensive evaluation on multiple synthetic datasets, AsmMix consistently demonstrates high precision and recall rates for haplotyping across diverse sequencing platforms, coverage depths, read lengths, and read accuracies, significantly outperforming other existing tools in the field. Furthermore, we validate the effectiveness of our pipeline using a human whole genome dataset (HG002), and produce highly contiguous, accurate, and haplotype-resolved assemblies. These assemblies are evaluated using the GIAB benchmarks, confirming the accuracy of variant calling. Our results demonstrate that AsmMix offers a straightforward yet highly efficient approach that effectively leverages both long reads and co-barcoded reads for haplotype-resolved assembly.

2.
Commun Biol ; 7(1): 976, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39128935

ABSTRACT

Intertidal algae may adapt to environmental challenges by acquiring genes from other organisms and relying on symbiotic microorganisms. Here, we obtained a symbiont-free and chromosome-level genome of Pyropia haitanensis (47.2 Mb), a type of intertidal algae, by using multiple symbiont screening methods. We identified 286 horizontal gene transfer (HGT) genes, 251 of which harbored transposable elements (TEs), reflecting the importance of TEs for facilitating the transfer of genes into P. haitanensis. Notably, the bulked segregant analysis revealed that two HGT genes, sirohydrochlorin ferrochelatase and peptide-methionine (R)-S-oxide reductase, play a significant role in the adaptation of P. haitanensis to heat stress. Besides, we found Pseudomonas, Actinobacteria, and Bacteroidetes are the major taxa among the symbiotic bacteria of P. haitanensis (nearly 50% of the HGT gene donors). Among of them, a heat-tolerant actinobacterial strain (Saccharothrix sp.) was isolated and revealed to be associated with the heat tolerance of P. haitanensis through its regulatory effects on the genes involved in proline synthesis (proC), redox homeostasis (ggt), and protein folding (HSP20). These findings contribute to our understanding of the adaptive evolution of intertidal algae, expanding our knowledge of the HGT genes and symbiotic microorganisms to enhance their resilience and survival in challenging intertidal environments.


Subject(s)
Gene Transfer, Horizontal , Porphyra , Symbiosis , Symbiosis/genetics , Porphyra/microbiology , Porphyra/genetics , Adaptation, Physiological/genetics , Phylogeny , Biological Evolution
3.
Environ Pollut ; 360: 124682, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111530

ABSTRACT

Photocatalyst-activated peroxymonosulfate (PMS) degradation of pollutants is already widely used for wastewater treatment under visible light. Polyethylene terephthalate (PET) is widely used in daily life, but waste plastics have an irreversible negative impact on the environment. In this paper, the ZIF-67/g-C3N4 S-scheme heterojunction catalyst was synthesized as a photocatalyst to achieve a good effect on PET degradation in coordination with PMS. The results indicated that PET could be degraded up to 60.63 ± 2.12 % under the combined effect of catalyst, PMS, and light. In this experiment, the influence of catalyst-to-plastic ratio, PMS concentration, aqueous pH, and inorganic anions on plastic degradation by the photocatalytic synergistic PMS system was discussed, and the excellent performance of this system for degrading PET was highlighted through a comparative test. Electron spin resonance (ESR) and free radical quenching experiments demonstrated that SO4•- contributes the largest amount to the PET degradation performance. Furthermore, results from gas chromatography and liquid chromatography-mass spectrometry (LC-MS) indicated that the plastic degradation products include CO, CH4, and organic small-molecule liquid fuels. Finally, a possible mechanism for the light/PMS system to degrade PET in water was suggested. This paper provides a feasible solution to treat waste microplastics in water.

4.
Biology (Basel) ; 13(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39056673

ABSTRACT

Teleosts are the most prolific vertebrates, occupying the vast majority of aquatic environments, and their pectoral fins have undergone remarkable physiological transformations throughout their evolution. Studying early teleost fishes, such as those belonging to the Osteoglossiformes order, could offer crucial insights into the adaptive evolution of pectoral fins within this group. In this study, we have assembled a chromosomal-level genome for the Clown featherback (Chitala ornata), achieving the highest quality genome assembly for Osteoglossiformes to date, with a contig N50 of 32.78 Mb and a scaffold N50 of 40.73 Mb. By combining phylogenetic analysis, we determined that the Clown featherback diverged approximately 202 to 203 million years ago (Ma), aligning with continental separation events. Our analysis revealed the intriguing discovery that a unique deletion of regulatory elements is adjacent to the Gli3 gene, specifically in teleosts. This deletion might be tied to the specialized adaptation of their pectoral fins. Furthermore, our findings indicate that specific contractions and expansions of transposable elements (TEs) in teleosts, including the Clown featherback, could be connected to their adaptive evolution. In essence, this study not only provides a high-quality genomic resource for Osteoglossiformes but also sheds light on the evolutionary trajectory of early teleosts.

5.
Antioxidants (Basel) ; 13(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39061928

ABSTRACT

Poplar buds are characterized by a high content of phenolic compounds, which exhibit a broad spectrum of biological activities. However, the relationship between Chinese propolis and poplar buds based on their antioxidant capacities and underlying mechanisms remains unclear. This study aimed to investigate the antioxidant properties of poplar bud (Populus) extract (PBE) and Chinese propolis (CP) and to elucidate the mechanisms behind their activity. High-performance liquid chromatography (HPLC) analysis revealed that both PBE and CP contain a significant amount of phenolic acids and flavonoids. 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric-reducing antioxidant power (FRAP) assays demonstrated that PBE and CP possess excellent antioxidant activity. Furthermore, administration of PBE and CP improved the survival rate of C. elegans under oxidative stress. They also decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activity of antioxidant enzymes (SOD, CAT). PBE and CP intervention upregulated the expression of key genes daf-16, sod-3, hsp-16.2, and skn-1 in nematodes. This suggests that the antioxidant activity of PBE and CP is dependent on daf-16 and skn-1 signaling pathways. In conclusion, poplar bud extracts ha have the potential to become a substitute for propolis and a potential therapeutic agent for treating diseases associated with oxidative damage.

6.
Adv Mater ; : e2404013, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39030761

ABSTRACT

Van der Waals junctions hold significant potentials for various applications in multifunctional and low-power electronics and optoelectronics. The multistep device fabrication process usually introduces lattice mismatch and defects at the junction interfaces, which deteriorate device performance. Here the layer engineering synthesis of van der Waals homojunctions consisting of 2H-MoTe2 with asymmetric thickness to eliminate heterogenous interfaces and thus obtain clean interfaces is reported. Experimental results confirm that the homostructure nature gives rise to the formation of pristine van der Waals junctions, avoiding chemical disorders and defects. The ability to tune the energy bands of 2H-MoTe2 continuously through layer engineering enables the creation of adjustable built-in electric field at the homojunction boundaries, which leads to the achievement of self-powered photodetection based on the obtained 2H-MoTe2 films. Furthermore, the successful integration of 2H-MoTe2 homojunctions into an image sensor with 10 × 10 pixels, brings about zero-power consumption and near-infrared imaging functions. The pristine van der Waals homojunctions and effective integration strategies shed new insights into the development of large-scale application for two-dimensional materials in advanced electronics and optoelectronics.

7.
PeerJ ; 12: e17517, 2024.
Article in English | MEDLINE | ID: mdl-38846751

ABSTRACT

Background: Psilocybin and related tryptamines have come into the spotlight in recent years as potential therapeutics for depression. Research on the mechanisms of these effects has historically focused on the direct effects of these drugs on neural processes. However, in addition to such neural effects, alterations in peripheral physiology may also contribute to their therapeutic effects. In particular, substantial support exists for a gut microbiome-mediated pathway for the antidepressant efficacy of other drug classes, but no prior studies have determined the effects of tryptamines on microbiota. Methods: To address this gap, in this preliminary study, male Long Evans rats were treated with varying dosages of oral psilocybin (0.2 or 2 mg/kg), norbaeocystin (0.25 or 2.52 mg/kg), or vehicle and their fecal samples were collected 1 week and 3 weeks after exposure for microbiome analysis using integrated 16S ribosomal DNA sequencing to determine gut microbiome composition. Results: We found that although treatment with neither psilocybin nor norbaeocystin significantly affected overall microbiome diversity, it did cause significant dose- and time-dependent changes in bacterial abundance at the phylum level, including increases in Verrucomicrobia and Actinobacteria, and decreases in Proteobacteria. Conclusion and Implications: These preliminary findings support the idea that psilocybin and other tryptamines may act on the gut microbiome in a dose- and time-dependent manner, potentially identifying a novel peripheral mechanism for their antidepressant activity. The results from this preliminary study also suggest that norbaeocystin may warrant further investigation as a potential antidepressant, given the similarity of its effects to psilocybin.


Subject(s)
Feces , Gastrointestinal Microbiome , Rats, Long-Evans , Tryptamines , Animals , Gastrointestinal Microbiome/drug effects , Male , Tryptamines/pharmacology , Tryptamines/administration & dosage , Rats , Feces/microbiology , Psilocybin/pharmacology , Psilocybin/administration & dosage , Administration, Oral , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage
8.
J Colloid Interface Sci ; 668: 471-483, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38691957

ABSTRACT

Three-dimensional (3D) macroscopic aerogels have emerged as a critical component in the realm of photocatalysis. Maximizing the integration of materials can result in enhanced efficiency and selectivity in photocatalytic processes. In this investigation, we fabricated MOF-808/reduced graphene oxide (RGO) 3D macroscopic aerogel composite materials employing the techniques of hydrothermal synthesis and freeze-drying. The results revealed that the macroscopic aerogel material exhibited the highest performance in CO2 reduction to CO, particularly when the concentration of RGO was maintained at 5 mg mL-1. In addition, we synthesized powder materials of MR-5 composite photocatalysts and conducted a comparative analysis in terms of photocatalytic CO2 reduction performance and electron transfer efficiency. The results showthat the macroscopic aerogel material boasts a high specific surface area, an abundant internal pore structure, and increased active sites. These attributes collectively enhance light energy utilization, and electron transfer rates, thereby, improving photothermal and photoelectric conversion efficiencies. Furthermore, we conducted in-situ FT-IR measurements and found that the M/R-5 aerogel exhibited the best CO2 adsorption capacity under a CO2 flow rate of 10 mL min-1. The density functional theory results demonstrate the correlation between the formation pathway of the product and the charge transfer pathway. This study provides useful ideas for realizing photocatalytic CO2 reduction of macroscopic aerogel materials in gas-solid reaction mode.

9.
J Agric Food Chem ; 72(17): 10127-10137, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38651754

ABSTRACT

Pecan nuts are rich in lipids that tend to deteriorate during storage. Tandem mass-tag-based quantitative proteomics and transcriptomics were used to investigate the changes in the protein and gene profiles of stored pecan kernels for the first time. Our previous lipidomic data were jointly analyzed to elucidate the coordinated changes in lipid molecules and related proteins/genes. The mechanism underlying lipid deterioration in pecan kernels during storage was revealed by multiomics analyses. Lipid metabolism-related pathways were activated during pecan storage. Phospholipases, triacylglycerol lipases, lipoxygenases, and oil body-related proteins/genes were highly expressed during storage, revealing their involvement in lipid deterioration. These data provide rich information and will be valuable for future genetic or chemical research to alleviate lipid deterioration in pecans.


Subject(s)
Carya , Food Storage , Lipid Metabolism , Plant Proteins , Proteomics , Carya/chemistry , Carya/genetics , Carya/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Lipids/chemistry , Gene Expression Profiling , Transcriptome
10.
Bioinformatics ; 40(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38579261

ABSTRACT

MOTIVATION: Substrings of length k, commonly referred to as k-mers, play a vital role in sequence analysis. However, k-mers are limited to exact matches between sequences leading to alternative constructs. We recently introduced a class of new constructs, strobemers, that can match across substitutions and smaller insertions and deletions. Randstrobes, the most sensitive strobemer proposed in Sahlin (Effective sequence similarity detection with strobemers. Genome Res 2021a;31:2080-94. https://doi.org/10.1101/gr.275648.121), has been used in several bioinformatics applications such as read classification, short-read mapping, and read overlap detection. Recently, we showed that the more pseudo-random the behavior of the construction (measured in entropy), the more efficient the seeds for sequence similarity analysis. The level of pseudo-randomness depends on the construction operators, but no study has investigated the efficacy. RESULTS: In this study, we introduce novel construction methods, including a Binary Search Tree-based approach that improves time complexity over previous methods. To our knowledge, we are also the first to address biases in construction and design three metrics for measuring bias. Our evaluation shows that our methods have favorable speed and sampling uniformity compared to existing approaches. Lastly, guided by our results, we change the seed construction in strobealign, a short-read mapper, and find that the results change substantially. We suggest combining the two results to improve strobealign's accuracy for the shortest reads in our evaluated datasets. Our evaluation highlights sampling biases that can occur and provides guidance on which operators to use when implementing randstrobes. AVAILABILITY AND IMPLEMENTATION: All methods and evaluation benchmarks are available in a public Github repository at https://github.com/Moein-Karami/RandStrobes. The scripts for running the strobealign analysis are found at https://github.com/NBISweden/strobealign-evaluation.

11.
Gigascience ; 13(1)2024 01 02.
Article in English | MEDLINE | ID: mdl-38373745

ABSTRACT

BACKGROUND: Cell clustering is a pivotal aspect of spatial transcriptomics (ST) data analysis as it forms the foundation for subsequent data mining. Recent advances in spatial domain identification have leveraged graph neural network (GNN) approaches in conjunction with spatial transcriptomics data. However, such GNN-based methods suffer from representation collapse, wherein all spatial spots are projected onto a singular representation. Consequently, the discriminative capability of individual representation feature is limited, leading to suboptimal clustering performance. RESULTS: To address this issue, we proposed SGAE, a novel framework for spatial domain identification, incorporating the power of the Siamese graph autoencoder. SGAE mitigates the information correlation at both sample and feature levels, thus improving the representation discrimination. We adapted this framework to ST analysis by constructing a graph based on both gene expression and spatial information. SGAE outperformed alternative methods by its effectiveness in capturing spatial patterns and generating high-quality clusters, as evaluated by the Adjusted Rand Index, Normalized Mutual Information, and Fowlkes-Mallows Index. Moreover, the clustering results derived from SGAE can be further utilized in the identification of 3-dimensional (3D) Drosophila embryonic structure with enhanced accuracy. CONCLUSIONS: Benchmarking results from various ST datasets generated by diverse platforms demonstrate compelling evidence for the effectiveness of SGAE against other ST clustering methods. Specifically, SGAE exhibits potential for extension and application on multislice 3D reconstruction and tissue structure investigation. The source code and a collection of spatial clustering results can be accessed at https://github.com/STOmics/SGAE/.


Subject(s)
Benchmarking , Gene Expression Profiling , Animals , Cluster Analysis , Data Mining , Drosophila/genetics
12.
Brain Connect ; 14(1): 48-59, 2024 02.
Article in English | MEDLINE | ID: mdl-38063007

ABSTRACT

Introduction: In resting-state functional magnetic resonance imaging (rs-fMRI) studies, global signal regression (GSR) is a controversial preprocessing strategy. It effectively eliminates global noise driven by motion and respiration but also can introduce artifacts and remove functionally relevant metabolic information. Most preclinical rs-fMRI studies are performed in anesthetized animals, and anesthesia will alter both metabolic and neuronal activity. Methods: In this study, we explored the effect of GSR on rs-fMRI data collected under anesthetized and awake state in mice (n = 12). We measured global signal amplitude, and also functional connectivity (FC), functional connectivity density (FCD) maps, and brain modularity, all commonly used data-driven analysis methods to quantify connectivity patterns. Results: We found that global signal amplitude was similar between the awake and anesthetized states. However, GSR had a different impact on connectivity networks and brain modularity changes between states. We demonstrated that GSR had a more prominent impact on the anesthetized state, with a greater decrease in functional connectivity and increased brain modularity. We classified mice using the change in amplitude of brain modularity coefficient (ΔQ) before and after GSR processing. The results revealed that, when compared with the largest ΔQ group, the smallest ΔQ group had increased FCD in the cortex region in both the awake and anesthetized states. This suggests differences in individual mice may affect how GSR differentially affects awake versus anesthetized functional connectivity. Discussion: This study suggests that, for rs-fMRI studies which compare different physiological states, researchers should use GSR processing with caution.


Subject(s)
Brain Mapping , Brain , Mice , Animals , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Wakefulness , Magnetic Resonance Imaging/methods
13.
J Neuroinflammation ; 20(1): 277, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001534

ABSTRACT

Luteolin is a flavonoid found in high concentrations in celery and green pepper, and acts as a neuroprotectant. PSMC5 (proteasome 26S subunit, ATPase 5) protein levels were reduced after luteolin stimulation in activated microglia. We aimed to determine whether regulating PSMC5 expression could inhibit neuroinflammation, and investigate the underlying mechanisms.BV2 microglia were transfected with siRNA PSMC5 before the addition of LPS (lipopolysaccharide, 1.0 µg/ml) for 24 h in serum free DMEM. A mouse model of LPS-induced cognitive and motor impairment was established to evaluate the neuroprotective effects of shRNA PSMC5. Intracerebroventricular administration of shRNA PSMC5 was commenced 7 days prior to i.p. injection of LPS (750 µg/kg). Treatments and behavioral experiments were performed once daily for 7 consecutive days. Behavioral tests and pathological/biochemical assays were performed to evaluate LPS-induced hippocampal damage. Molecular dynamics simulation was used to confirm the interaction between PSMC5 and TLR4 (Toll-like receptor 4) in LPS-stimulated BV2 microglia. SiRNA PSMC5 inhibited BV2 microglial activation, and suppressed the release of inflammatory factors (IL-1ß, COX-2, PGE2, TNF-α, and iNOS) upon after LPS stimulation in BV2 microglia. LPS increased IκB-α and p65 phosphorylation, which was attenuated by siRNA PSMC5. Behavioral tests and pathological/biochemical assays showed that shRNA PSMC5 attenuated LPS-induced cognitive and motor impairments, and restored synaptic ultrastructure and protein levels in mice. ShRNA PSMC5 reduced pro-inflammatory cytokine (TNF-α, IL-1ß, PGE2, and NO) levels in the serum and brain, and relevant protein factors (iNOS and COX-2) in the brain. Furthermore, shRNA PSMC5 upregulated the anti-inflammatory mediators interleukin IL-4 and IL-10 in the serum and brain, and promoted a pro-inflammation-to-anti-inflammation phenotype shift in microglial polarization. Mechanistically, shRNA PSMC5 significantly alleviated LPS-induced TLR4 expression. The polarization of LPS-induced microglial pro-inflammation phenotype was abolished by TLR4 inhibitor and in the TLR-4-/- mouse, as in shRNA PSMC5 treatment. PSMC5 interacted with TLR4 via the amino sites Glu284, Met139, Leu127, and Phe283. PSMC5 site mutations attenuated neuroinflammation and reduced pro-inflammatory factors by reducing TLR4-related effects, thereby reducing TLR4-mediated MyD88 (myeloid differentiation factor 88)-dependent activation of NF-κB. PSMC5 could be an important therapeutic target for treatment of neurodegenerative diseases involving neuroinflammation-associated cognitive deficits and motor impairments induced by microglial activation.


Subject(s)
Motor Disorders , Signal Transduction , Animals , Mice , Cognition , Cyclooxygenase 2/metabolism , Inflammation/metabolism , Lipopolysaccharides/adverse effects , Luteolin/pharmacology , Microglia/metabolism , Neuroinflammatory Diseases , NF-kappa B/metabolism , RNA, Small Interfering/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
15.
Nano Converg ; 10(1): 37, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37561270

ABSTRACT

With a high specific capacity and low electrochemical potentials, metal anode batteries that use lithium, sodium and zinc metal anodes, have gained great research interest in recent years, as a potential candidate for high-energy-density storage systems. However, the uncontainable dendrite growth during the repeated charging process, deteriorates the battery performance, reduces the battery life and more importantly, raises safety concerns. With their unique properties, two-dimensional (2D) materials, can be used to modify various components in metal batteries, eventually mitigating the dendrite growth, enhancing the cycling stability and rate capability, thus leading to safe and robust metal anodes. In this paper, we review the recent advances of 2D materials and summarize current research progress of using 2D materials in the applications of (i) anode design, (ii) separator engineering, and (iii) electrolyte modifications by guiding metal ion nucleation, increasing ion conductivity, homogenizing the electric field and ion flux, and enhancing the mechanical strength for safe metal anodes. The 2D material modifications provide the ultimate solution for obtaining dendrite-free metal anodes, realizes the high energy storage application, and indicates the importance of 2D materials development. Finally, in-depth understandings of subsequent metal growth are lacking due to research limitations, while more advanced characterizations are welcome for investigating the metal deposition mechanism. The more facile and simplified preparation of 2D materials possess great prospects in high energy density metal anode batteries, and thus fulfils the development of EVs.

16.
Chem Commun (Camb) ; 59(61): 9356-9359, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37431776

ABSTRACT

Photocatalytic mineralization of organic pollutions and simultaneously converting CO2 to CO (tetracycline → CO2 → CO) represents a fascinating way to solve the environmental and energy crisis. This work demonstrates the excellent mineralization and CO2 reduction performance of S-vacancy CdS and reveals the high efficiency of the carbon self-recycling two-in-one photocatalytic system.

17.
PLoS One ; 18(7): e0288999, 2023.
Article in English | MEDLINE | ID: mdl-37471436

ABSTRACT

Castanopsis carlesii (Hemsl.) Hay. is a widely distributed and dominant tree species native to subtropical China with significant ecological and economic value. Due to serious human-related disturbance, its wild resources have been increasingly reduced, and whether may result in the loss of genetic diversity. However, no population genetics studies of natural C. carlesii have been reported to date. Microsatellite markers have been a useful tool in population genetics. Therefore, we developed EST-SSR markers based on the transcriptome sequencing of C. carlesii leaves. A total of 149,380,224 clean reads were obtained, and 63,012 nonredundant unigenes with a mean length of 1,034 bp were assembled and annotated based on sequence similarity searches in the Nr, Nt, KO, SwissProt, PFAM, KOG, and GO databases. The results showed that only 5,559 (8.82%) unigenes were annotated in all seven databases, but 46,338 (73.53%) could be annotated in at least one database. A total of 31,459 potential EST-SSRs were identified in 18,690 unigenes, with an average frequency of one SSR approximately 2 kb. Among the 100 EST-SSR primer pairs designed, 49 primer pairs successfully produced the expected product by amplification, with a success rate of 49%, but only 20 primer pairs showed abundant polymorphisms. Polymorphisms were verified using 25 samples from C. carlesii in Qimen, Anhui. A total of 119 alleles were detected, with a mean number of alleles (Na) of 5.95 per locus and a mean polymorphism information content (PIC) of 0.6125. All the 20 newly developed EST-SSR markers were verified in other Castanopsis species (C. sclerophylla, C. lamontii, C. fargesii, C. eyrei and C. jucunda). Sixteen primer pairs showed successful amplification in all five Castanopsis species (80%), and the transferability ratios ranged from 90% to 100%. These developed EST-SSR markers can be applied to population genetic and germplasm evaluations of C. carlesii and related species.


Subject(s)
Polymorphism, Genetic , Transcriptome , Humans , Transcriptome/genetics , Expressed Sequence Tags , Genetic Markers/genetics , Microsatellite Repeats/genetics , Databases, Protein
18.
Cell Res ; 33(10): 745-761, 2023 10.
Article in English | MEDLINE | ID: mdl-37452091

ABSTRACT

Since the release of the complete human genome, the priority of human genomic study has now been shifting towards closing gaps in ethnic diversity. Here, we present a fully phased and well-annotated diploid human genome from a Han Chinese male individual (CN1), in which the assemblies of both haploids achieve the telomere-to-telomere (T2T) level. Comparison of this diploid genome with the CHM13 haploid T2T genome revealed significant variations in the centromere. Outside the centromere, we discovered 11,413 structural variations, including numerous novel ones. We also detected thousands of CN1 alleles that have accumulated high substitution rates and a few that have been under positive selection in the East Asian population. Further, we found that CN1 outperforms CHM13 as a reference genome in mapping and variant calling for the East Asian population owing to the distinct structural variants of the two references. Comparison of SNP calling for a large cohort of 8869 Chinese genomes using CN1 and CHM13 as reference respectively showed that the reference bias profoundly impacts rare SNP calling, with nearly 2 million rare SNPs miss-called with different reference genomes. Finally, applying the CN1 as a reference, we discovered 5.80 Mb and 4.21 Mb putative introgression sequences from Neanderthal and Denisovan, respectively, including many East Asian specific ones undetected using CHM13 as the reference. Our analyses reveal the advances of using CN1 as a reference for population genomic studies and paleo-genomic studies. This complete genome will serve as an alternative reference for future genomic studies on the East Asian population.


Subject(s)
Diploidy , East Asian People , Genome, Human , Telomere , Humans , Male , Asian People/genetics , East Asian People/ethnology , East Asian People/genetics , Genome, Human/genetics , Genomics , Telomere/genetics
19.
J Colloid Interface Sci ; 650(Pt B): 1762-1772, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37506417

ABSTRACT

Step-scheme (S-scheme) heterojunctions can efficiently promote the separation of photogenerated carriers while maintaining the strong oxidation/reduction ability of photocatalysts; thus, research attention on S-scheme heterojunctions is increasing year by year. In this study, the S-scheme ZnO@ZnIn2S4 (ZnO@ZIS) heterojunction was prepared successfully. Then, electron spin resonance (ESR) characterization was applied to prove the successful construction of the S-scheme heterojunction. Photoluminescence (PL), time-resolved photoluminescence (TRPL), and photoelectrochemical experiments have demonstrated efficient interfacial charge transport in ZnO@ZIS. Finally, the mechanism of CO2 activation and electron transport was investigated by in situ Fourier transform infrared spectroscopy (FT-IR) and discrete Fourier transform (DFT) calculation analysis. The 40-ZnO@ZIS composite showed the best activity under light, and its CO and CH4 yields reached 39.76 and 3.92 µmol∙g-1∙h-1, respectively. This study provides a solution for optimizing the photocatalytic reduction activity of semiconductor photocatalysts by constructing S-scheme heterojunction materials to improve the CO2 reduction capacity.

20.
Food Chem ; 424: 136377, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37267651

ABSTRACT

Pecan nuts are highly enriched in phenolic compounds, which contribute to the health benefits of pecans. Phenolic compounds represent the main oxidation reaction substrates, thus leading to quality deterioration, namely pellicle browning or a decrease in beneficial effects during pecan storage. Hence, four different storage conditions were performed for 180 d to simulate real production situations. Targeted metabolomics was chosen to identify the specific phenolic compounds involved in quality deterioration under different storage conditions in 0, 90, and 180 d samples. A total of 118 phenolic compounds were detected, nine of which were identified for the first time in pecan. The total phenolic content (TPC) and antioxidant capacities initially demonstrated high scores, after which they tended to decrease during the storage process. The significantly modified phenolic compounds during storage were selected as the metabolite markers of pecan quality deterioration, including catechin, procyanidin (PA) trimer, PA tetramer, trigalloyl hexahydroxydiphenoyl (HHDP) glucose, and tetragalloyl hexoside. Fresh pecan kernels resulted in more pronounced changes in hydrolysable tannins (HTs), whereas dry kernels resulted in the most accentuated changes in condensed tannins (CTs). To the best of our knowledge, this is the first attempt to study individual phenolic changes during storage of pecan in such massive amounts. The results can offer a valuable theoretical basis for future control of pecan quality deterioration through phenolics during storage.


Subject(s)
Carya , Nuts , Nuts/chemistry , Carya/chemistry , Phenols/analysis , Antioxidants/chemistry , Plant Extracts/analysis
SELECTION OF CITATIONS
SEARCH DETAIL